DNA Sequence Design using $\varepsilon$ -Multiobjective Evolutionary Algorithm

$\varepsilon$-다중목적함수 진화 알고리즘을 이용한 DNA 서열 디자인

  • 신수용 (서울대학교 컴퓨터공학부) ;
  • 이인희 (서울대학교 컴퓨터공학부) ;
  • 장병탁 (서울대학교 컴퓨터공학부)
  • Published : 2005.12.01

Abstract

Recently, since DNA computing has been widely studied for various applications, DNA sequence design which is the most basic and important step for DNA computing has been highlighted. In previous works, DNA sequence design has been formulated as a multi-objective optimization task, and solved by elitist non-dominated sorting genetic algorithm (NSGA-II). However, NSGA-II needed lots of computational time. Therefore, we use an $\varepsilon$- multiobjective evolutionarv algorithm ($\varepsilon$-MOEA) to overcome the drawbacks of NSGA-II in this paper. To compare the performance of two algorithms in detail, we apply both algorithms to the DTLZ2 benchmark function. $\varepsilon$-MOEA outperformed NSGA-II in both convergence and diversity, $70\%$ and $73\%$ respectively. Especially, $\varepsilon$-MOEA finds optimal solutions using small computational time. Based on these results, we redesign the DNA sequences generated by the previous DNA sequence design tools and the DNA sequences for the 7-travelling salesman problem (TSP). The experimental results show that $\varepsilon$-MOEA outperforms the most cases. Especially, for 7-TSP, $\varepsilon$-MOEA achieves the comparative results two tines faster while finding $22\%$ improved diversity and $92\%$ improved convergence in final solutions using the same time.

최근 들어 DNA 컴퓨팅이 활발하게 연구되면서, DNA 컴퓨팅에서 가장 기본적이고도 중요한 DNA 서열 디자인 문제가 부각되고 있다. 기존의 연구에서 DNA 서열 디자인 문제를 다중목적 최적화 문제로 정의하고, elitist non-dominated sorting genetic algorithm(NSGA-II)를 이용하여 성공적으로 DNA 서열을 디자인하였다. 그런데, NSGA-II는 계산속도가 느리다는 단점이 있어서, 이를 극복하기 위해 본 논문에서는 $\varepsilon$-다중목적함수 진화알고리즘(r-Multiobjective evolutionary algorithm, $\varepsilon$-MOEA)을 DNA 서열 디자인에 이용하였다. 우선, 두 알고리즘의 성능을 보다 자세히 비교하기 위해서 DTLZ2 벤치 마크 문제에 대해서 적용한 결과, 목적함수의 개수가 작은 경우에는 큰 차이가 없으나, 목적함수의 개수가 많을 경우에는 $\varepsilon$-MOEA가 NSGA-II에 대해서 최적해를 찾는 정도(Convergence)와 다양한 해를 찾는 정도 (diversity)에 있어서 각각 $70\%,\;73\%$ 향상된 성능을 보여주었고, 또한 최적해를 찾는 속도도 비약적으로 개선되었다. 이러한 결과를 바탕으로 기존의 DNA 서열 디자인 방법론으로 디자인된 DNA 서열들과 7-순환외판원 문제 해결에 필요한 DNA 서열을 NSGA-II와 $\varepsilon$-MOEA로 재디자인하였다. 대부분의 경우 $\varepsilon$-MOEA가 우수한 결과를 보였고, 특히 7-순환외판원 문제에 대해서 NSGA-II와 비교하여 convergence와 diversity의 측면에서 유사한 결과를 2배 이상 빨리 발견하였고, 동일한 계산 시간을 이용해서는 $22\%$ 정도 보다 다양하게 해를 발견하였으며, $92\%$ 우수한 최적해를 발견하는 것을 확인하였다.

Keywords

References

  1. Garzon, M. H. and Deaton, R. J., 'Biomolecule Computing and Programming,' IEEE Transactions on Evolutionary Computation, Vol.3, No.3, pp. 236-250, 1999 https://doi.org/10.1109/4235.788493
  2. Reif, J. H., 'The Emergence of the Discipline of Biomolecular Computation in the US,' New Generation Computing, Vol.30, No.3, pp. 217-236, 2002
  3. Maley, C. C., 'DNA Computation: Theory, Practice, and Prospects,' Evolutionary Computation, Vol.6, No.3, pp. 201-229, 1998 https://doi.org/10.1162/evco.1998.6.3.201
  4. Shin, S. - Y., Lee, I.- H., Kim, D., and Zhang, B.-T., 'Multi-Objective Evolutionary Optimization of DNA Sequences for Reliable DNA Computing,' IEEE Transactions on Evolutionary Computation, Vol.9, No.2, pp. 143-158, 2005 https://doi.org/10.1109/TEVC.2005.844166
  5. Laumanns, M., Thiele, L., Deb, K, and Zitzler, E., 'Combining Convergence and Diversity in Evolutionary Multi-Objective Optimization,' Evolutionary Computation, Vol.10, No.3, pp. 263-282, 2002 https://doi.org/10.1162/106365602760234108
  6. Deb. K., Mohan, M., and Mishra, S., 'A Fast Multi-Objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions,' Kan-GAL Report No. 2003002, 2003
  7. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., 'A Fast and elitist multiobjective genetic algorithm: NSGA-II,' IEEE Transactions on Evolutionary Computation, Vol.6, pp. 182-197, 2001 https://doi.org/10.1109/4235.996017
  8. Garzon, M. and Deaton, R, 'Codeword design and information encoding in DNA ensembles,' Natural Computing, Vol.3, No.3, pp. 253-292, 2004 https://doi.org/10.1023/B:NACO.0000036818.27537.c9
  9. Deb, K., Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Ltd., 2001
  10. Deb, K., Thiele, L., Laumanns, M., and Zitzler, E., 'Scalable Test Problems for Evolutionary Multi-Objective Optimization,' KanGAL Report No. 200101, 2001
  11. Deb, K. and Agrawal, R. B., 'Simulated Binary Crossover for Continuous Search Space,' Complex Systems, Vol.9, No.2, pp. 115-148, 1995
  12. Deb. K. and Goyal, M., 'A Combined Genetic Adaptive Search(GeneAS) for Engineering Design,' Computer Science and Informatics, Vol.26, No.4, pp. 30-45, 1996
  13. Veldhuizen, D. V., 'Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations,' Ph. D. Thesis, Dayton, OH:Air Force Institute of Technology, Technical Report No. AFIT/DS/ENG/99-01, 1999
  14. Zitzler, E., 'Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications,' Ph. D. Thesis, Zurich, Switzerland:Swiss Federal Institute of Technology(ETH)(Dissertation ETH No. 13398), 1998
  15. Purshouse, R. C. and Fleming, P. J., 'Evolutionary Many-Objective Optimisation: An Exploratory Analysis,' Proceedings of the 2003 Congress on Evolutionary Computation, pp. 2066-2073, 2003 https://doi.org/10.1109/CEC.2003.1299927
  16. Deaton, R., Murphy, R. C., Garzon, M., Franceschetti, D. R., and Stevens Jr., S. E., 'Good encoding for DNA-based solutions to combinatorial problems.' Proceedings of the Second Annual Meeting on DNA Based Computers, pp. 247-258, 1996
  17. S.-Y. Shin, 'Multi-Objective Evolutionary Optimization of DNA Sequences for Molecular Computing,' Ph. D. Thesis, Seoul National University, 2005
  18. Tanaka, F., Nakatsugawa, M., Yamamoto, M., Shiba, T., and Ohuchi, A., 'Developing support system for sequence design in DNA computing,' Proceddings of the 7th International Workshop on DNA Based Computers, pp. 340-349, 2001
  19. Lee, J. Y., Shin, S.-Y., Park, T. H., and Zhang, B.-T., 'Solving Traveling Salesman Problems with DNA Molecules Encoding Numerical Values,' BioSystems, Vol.78, pp. 39-47, 2004 https://doi.org/10.1016/j.biosystems.2004.06.005