An Adaptive Recommendation Service Scheme Using Context-Aware Information in Ubiquitous Environment

유비쿼터스 환경에서 상황 인지 정보를 이용한 적응형 추천 서비스 기법

  • 최정환 (성균관대학교 휴대폰학과) ;
  • 류상현 (성균관대학교 전자전기컴퓨터공학과) ;
  • 장현수 (성균관대학교 전자전기컴퓨터공학과) ;
  • 엄영익 (성균관대학교 정보통신공학부)
  • Received : 2008.10.02
  • Accepted : 2010.01.04
  • Published : 2010.03.15

Abstract

With the emergence of ubiquitous computing era, various models for providing personalized service have been proposed, and, especially, several recommendation service schemes have been proposed to give tailored services to users proactively. However, the previous recommendation service schemes utilize a wide range of data without and filtering and consider the limited context-aware information to predict user preferences so that they are not adequate to provide personalized service to users. In this paper, we propose an adaptive recommendation service scheme which proactively provides suitable services based on the current context. We use accumulated interaction contexts (IC) between users and devices for predicting the user's preferences and recommend adaptive service based on the current context by utilizing clustering and collaborative filtering. The clustering algorithm improves efficiency of the recommendation service by focusing and analyzing the data that is collected from the locations nearby the users. Collaborative filtering guarantees an accurate recommendation, even when the data is insufficient. Finally, we evaluate the performance and the reliability of the proposed scheme by simulations.

최근 유비쿼터스 시대의 도래와 함께 개인화된 서비스를 제공하기 위한 다양한 서비스 모델들이 제안되어 왔으며, 특히, 사용자에게 개인화된 서비스를 선응적으로 제공하기 위한 다양한 추천 서비스 기법들이 고안되었다. 그러나, 기존의 기법들은 수 많은 데이터를 여과 과정 없이 분석함으로써 추천의 효율성이 떨어지며, 한정된 상황 인지 정보만용 추천 요소로 고려하기 때문에 사용자에게 개인화된 서비스를 제공하기에 적합하지 않다. 본 논문에서는 유비쿼터스 환경에서 사용자의 현재 상황에 가장 적합한 서비스를 제공하는 적응형 추천 서비스 기법을 제안한다. 본 기법은 사용자의 선호도 예측을 위해 누적된 사용자와 장치 간의 상호작용 상황 정보들을 이용하며, 군집 및 협업 필터링 기법을 이용하여 사용자에게 현재 상황에 적응적인 서비스를 추천한다. 군집 기법을 통해 사용자의 현재 위치에 근접한 데이터만을 분석함으로써, 추천의 효율성을 높이며, 협업 필터링을 이용하여 누적된 정보들이 충분하지 않은 상황에서도 정확한 추천을 보장한다. 끝으로, 시뮬레이션을 통해 본 기법의 성능 및 신뢰성을 평가한다.

Keywords

References

  1. W. Lee, "Towards Agent-based Decision making in the electronic market place: Interactive recommendation and automated negotiation," Elsevier Expert Systems with Applications, vol.27, pp.665-679, 2004. https://doi.org/10.1016/j.eswa.2004.07.001
  2. O. Kwon, K. Yoo, and E. Suh, "UbiDSS: A Proactive Intelligent Decision Support System as An Expert System Deploying Ubiquitous Computing Technologies," Elsevier Expert Systems with Applications, vol.28, pp.149-161, 2005. https://doi.org/10.1016/j.eswa.2004.08.007
  3. DW. McDonald, "Ubiquitous Recommendation Systems," IEEE invisible computing, vol.36, pp.111-112, 2003.
  4. J. J. Barton and T. Kindberg, "The Cooltown User Experience," Proc. of CHI2001, pp.149-156, 2001.
  5. D. Garlan, D. P. Siewiorek, A. Smailagic, and P. Steenkiste, "Project Aura: Toward Distraction-Free Pervasive Computing," IEEE Pervasive Computing, pp.22-31, 2002.
  6. Y. Takeuchi and M. Sugimoto, "CityVoyager: An Outdoor Recommendation on User Location History," Proc. of Ubiquitous Intelligence and Computing (UIC2006), pp.625-636, 2006.
  7. J. K. Kim, H. K. Kim, and Y. H. Cho, "A Useroriented Contents Recommendation System in Peer-to-peer Architecture," Elsevier Expert Systems with Applications, vol.34, pp.300-312, 2008. https://doi.org/10.1016/j.eswa.2006.09.034
  8. F. Ricci, and Q.N. Nguyen, "Acquiring and Revising Preferences in A Critique-based Mobile Recommender System," IEEE Intelligent systems, vol.22, pp.22-29, 2007.
  9. M. C. Chen, L. S. Chen, F. H. Hsu, Y. Hsu, and H. Y. Chou, "HPRS: A Profitability Based Recommender System," Proc. of IEEE International Conference on Industrial Engineering and Engineering Management, pp.219-223, 2007.
  10. W. Woerndl, and G. Groh, "Utilizing Physical and Social Context to Improve Recommender Systems," Proc. of IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Workshops, pp.123-128, 2007.
  11. C. Ono, M. Kurokawa, Y. Motomura, and H. Asoh, "A Context-aware Movie Preference Model Using A Bayesian Network for Recommendation and Promotion," LECTURE NOTES IN COMPUTER SCIENCE, vol.4511, pp.247-257, 2007.
  12. K. Oku, S. Nakajima, J. Miyazaki, S. Uemura, "Context-Aware SVM for Context-Dependent Information Recommendation," Proc. of IEEE Proceedings of the 7th International Conference on Mobile Data Management, pp.109-112, 2006.
  13. M. V. Setten, S. Pokraev, and J. Koolwaaij, "Context-Aware Recommendations in the Mobile Tourist Application COMPASS," Proc. of AH2004, Lecture Notes In Computer Science, vol.3137, Springer-Verlag, pp.235-244, 2004.
  14. A. Chen, "Context-Aware Collaborative Filtering System: Predicting the User's Preference in the Ubiquitous Computing Environment," Proc. of LoCA2005, Lecture Notes In Computer Science, vol.3479, Springer-Verlag, pp.244-253, 2005.
  15. Q. He, "A Review of Clustering Algorithms as Applied in IR," Proc. of UIUCLIS1999, pp.1-33, 1999.
  16. Schafer, J.B. and Frankowski, D. and Herlocker, J. and Sen, S., "Collaborative filtering recommender systems," Lecture Notes In Computer Science, Springer-Verlag, vol.4321, pp.291-324, 2007.
  17. M. O'Connor, J. Herlocker, "Clustering items for collaborative filtering," the Proc. of SIGIR-2001 Workshop on Recommender Systems, 2001.
  18. M. Balabnovic and Y. Shoham, "Content-based, Collaborative Recommendation," Communications of the ACM, vol.40, pp.66-72, 1997.
  19. D. Billsus and M. J. Pazzani, "Learning Collaborative Information Filters," Proc. of ICML, pp.46-53, 1998.