• Title, Summary, Keyword: Collaborative Filtering

Search Result 577, Processing Time 0.052 seconds

Simple Bayesian Model for Improvement of Collaborative Filtering (협업 필터링 개선을 위한 베이지안 모형 개발)

  • Lee, Young-Chan
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • /
    • pp.232-239
    • /
    • 2005
  • Collaborative-filtering-enabled Web sites that recommend books, CDs, movies, and so on, have become very popular on the Internet. Such sites recommend items to a user on the basis of the opinions of other users with similar tastes. This paper discuss an approach to collaborative filtering based on the Simple Bayesian and apply this model to two variants of the collaborative filtering. One is user-based collaborative filtering, which makes predictions based on the users' similarities. The other is item-based collaborative filtering which makes predictions based on the items' similarities. To evaluate the proposed algorithms, this paper used a database of movie recommendations. Empirical results show that the proposed Bayesian approaches outperform typical correlation-based collaborative filtering algorithms.

  • PDF

An Approach to Credibility Enhancement of Automated Collaborative Filtering System through Accommodating User's Rating Behavior

  • Sung, Jang-Hwan;Park, Jong-Hun
    • 한국경영정보학회:학술대회논문집
    • /
    • /
    • pp.576-581
    • /
    • 2007
  • The purpose of this paper is to strengthen trust on the automated collaborative filtering system. Automated collaborative filtering system is quickly becoming a popular technique for recommendation system. This elaborative methodology contributes for reducing information overload and the result becomes index of users' preference. In addition, it can be applied to various industries in various fields. After it collaborative filtering system was developed, many researches are executed to enhance credibility and to apply in various fields. Among these diverse systems, collaborative filtering system which uses Pearson correlation coefficient is most common in many researches. In this paper, we proposed new process diagram of collaborative filtering algorithm and new factors which should improve the credibility of system. In addition, the effects and relationships are also tested.

  • PDF

A Study on Improving Efficiency of Recommendation System Using RFM (RFM을 활용한 추천시스템 효율화 연구)

  • Jeong, Sora;Jin, Seohoon
    • Journal of the Korean Institute of Plant Engineering
    • /
    • v.23 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • User-based collaborative filtering is a method of recommending an item to a user based on the preference of the neighbor users who have similar purchasing history to the target user. User-based collaborative filtering is based on the fact that users are strongly influenced by the opinions of other users with similar interests. Item-based collaborative filtering is a method of recommending an item by comparing the similarity of the user's previously preferred items. In this study, we create a recommendation model using user-based collaborative filtering and item-based collaborative filtering with consumer's consumption data. Collaborative filtering is performed by using RFM (recency, frequency, and monetary) technique with purchasing data to recommend items with high purchase potential. We compared the performance of the recommendation system with the purchase amount and the performance when applying the RFM method. The performance of recommendation system using RFM technique is better.

The Research fur Prediction of Missing Value in Collaborative Filtering (협력적 여과(Collaborative Filtering)에서 결측치(Missing Value) 예측에 관한 연구)

  • 황철현;박영길;박용준
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • /
    • pp.333-337
    • /
    • 2000
  • 성공적인 사이트를 위한 필수적인 요소로 각광받고 있는 collaborative filtering 기술은 정보의 과부하를 줄일 수 있고 고객에 대한 충성도를 높여주는 효과로 인해 많은 사이트에 적용되어 운용되고 있다. 이 논문에서는 collaborative filtering 적용 포기에 발생하는 정보의 부족으로 인한 정확도 저하를 막기 위해 상품간 연관성을 이용한 결측티 예측 방안을 제안한다.

  • PDF

How to improve the diversity on collaborative filtering using tags

  • Joo, Jin-Hyeon;Park, Geun-Duk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.11-17
    • /
    • 2018
  • In this paper, we propose how to improve the lack of diversity in collaborative filtering, using tag scores contained in items rather than ratings of items. Collaborative filtering has excellent performance among recommendation system, but it is evaluated as lacking diversity. In order to solve this problem, this paper proposes a method for supplementing diversity lacking in collaborative filtering by using tags. By using tags that can be used universally without using the characteristics of specific articles in a recommendation system, The proposed method can be used.

Privacy-Preserving Two-Party Collaborative Filtering on Overlapped Ratings

  • Memis, Burak;Yakut, Ibrahim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2948-2966
    • /
    • 2014
  • To promote recommendation services through prediction quality, some privacy-preserving collaborative filtering solutions are proposed to make e-commerce parties collaborate on partitioned data. It is almost probable that two parties hold ratings for the same users and items simultaneously; however, existing two-party privacy-preserving collaborative filtering solutions do not cover such overlaps. Since rating values and rated items are confidential, overlapping ratings make privacy-preservation more challenging. This study examines how to estimate predictions privately based on partitioned data with overlapped entries between two e-commerce companies. We consider both user-based and item-based collaborative filtering approaches and propose novel privacy-preserving collaborative filtering schemes in this sense. We also evaluate our schemes using real movie dataset, and the empirical outcomes show that the parties can promote collaborative services using our schemes.

Performance Improvement Using Clustering in Collaborative Filtering Recommendation Systems (군집 분석을 통한 Collaborative Filtering 기반의 추천시스템의 성능개선)

  • Woo, Hee-Sung;Suh, Yong-Moo
    • 한국IT서비스학회:학술대회논문집
    • /
    • /
    • pp.223-232
    • /
    • 2003
  • 추천시스템을 설계하는 방법에는 크게 Content-Based Filtering 기법과 Collaborative Filtering 기법이 있다. 이 중 Collaborative Filtering 기법은 사용자가 아직 평가하지 못한 상품에 대한 예측값을 계산할 때, 나와 유사한 상품선호를 갖고 있는 사람들이 그 상품에 대해 평가한 점수를 활용하는 방법이다. 하지만 순수한 Collaborative Filtering 방법은 일반적으로 알려진 Data Sparsity의 문제, First Rater의 문제뿐만 아니라 예측값의 부정확성과 기하급수적 계산량의 증가로 실제구현이 어렵다는 문제점을 가지고 있다. 본 연구에서는 이러한 'Collaborative filtering' 시스템의 문제들 중 예측의 부정확성과 실제 구현의 어려움을 해결할 수 있는 방법으로 군집분석을 적용해 보았다. 특히 본 연구에서는 군집을 나눌 때, 실제 추천이 이루어지는 상품 도메인이 아닌, 그 상품도메인과 비슷한 선호의 기준을 가지고 선택하게 되는 '선택의 상관관계'가 높은 '이웃 상품도메인'에서 사용자들의 군집을 나누고 이를 실제 추천이 이루어지는 상품도메인에 적용하는 방식을 사용하였다.

  • PDF

Dynamic Fuzzy Cluster based Collaborative Filtering

  • Min, Sung-Hwan;Han, Ingoo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • /
    • pp.203-210
    • /
    • 2004
  • Due to the explosion of e-commerce, recommender systems are rapidly becoming a core tool to accelerate cross-selling and strengthen customer loyalty. There are two prevalent approaches for building recommender systems - content-based recommending and collaborative filtering. Collaborative filtering recommender systems have been very successful in both information filtering domains and e-commerce domains, and many researchers have presented variations of collaborative filtering to increase its performance. However, the current research on recommendation has paid little attention to the use of time related data in the recommendation process. Up to now there has not been any study on collaborative filtering to reflect changes in user interest. This paper proposes dynamic fuzzy clustering algorithm and apply it to collaborative filtering algorithm for dynamic recommendations. The proposed methodology detects changes in customer behavior using the customer data at different periods of time and improves the performance of recommendations using information on changes. The results of the evaluation experiment show the proposed model's improvement in making recommendations.

  • PDF

Recommendation System using 2-Way Hybrid Collaborative Filtering in E-Business (전자상거래에서 2-Way 혼합 협력적 필터링을 이용한 추천 시스템)

  • 김용집;정경용;이정현
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.175-178
    • /
    • 2003
  • Two defects have been pointed out in existing user-based collaborative filtering such as sparsity and scalability, and the research has been also made progress, which tries to improve these defects using item-based collaborative filtering. Actually there were many results, but the problem of sparsity still remains because of being based on an explicit data. In addition, the issue has been pointed out. which attributes of item arenot reflected in the recommendation. This paper suggests a recommendation method using nave Bayesian algorithm in hybrid user and item-based collaborative filtering to improve above-mentioned defects of existing item-based collaborative filtering. This method generates a similarity table for each user and item, then it improves the accuracy of prediction and recommendation item using naive Bayesianalgorithm. It was compared and evaluated with existing item-based collaborative filtering technique to estimate the accuracy.

  • PDF

Comparison of Recommendation Using Social Network Analysis with Collaborative Filtering in Social Network Sites (SNS에서 사회연결망 기반 추천과 협업필터링 기반 추천의 비교)

  • Park, Sangun
    • Journal of Information Technology Services
    • /
    • v.13 no.2
    • /
    • pp.173-184
    • /
    • 2014
  • As social network services has become one of the most successful web-based business, recommendation in social network sites that assist people to choose various products and services is also widely adopted. Collaborative Filtering is one of the most widely adopted recommendation approaches, but recommendation technique that use explicit or implicit social network information from social networks has become proposed in recent research works. In this paper, we reviewed and compared research works about recommendation using social network analysis and collaborative filtering in social network sites. As the results of the analysis, we suggested the trends and implications for future research of recommendation in SNSs. It is expected that graph-based analysis on the semantic social network and systematic comparative analysis on the performances of social filtering and collaborative filtering are required.