In this paper we compare a torsion free sheaf F on $P^N$ and the free vector bundle $\oplus^n_{i=1}O_{P^N}(b_i)$ having same rank and splitting type. We show that the first one has always "less" global sections, while it has a higher second Chern class. In both cases bounds for the difference are found in terms of the maximal free subsheaves of F. As a consequence we obtain a direct, easy and more general proof of the "Horrocks' splitting criterion", also holding for torsion free sheaves, and lower bounds for the Chern classes $c_i$(F(t)) of twists of F, only depending on some numerical invariants of F. Especially, we prove for rank n torsion free sheaves on $P^N$, whose splitting type has no gap (i.e., $b_i{\geq}b_{i+1}{\geq}b_i-1$ 1 for every i = 1,$\ldots$,n-1), the following formula for the discriminant: $$\Delta(F):=2_{nc_2}-(n-1)c^2_1\geq-\frac{1}{12}n^2(n^2-1)$$. Finally in the case of rank n reflexive sheaves we obtain polynomial upper bounds for the absolute value of the higher Chern classes $c_3$(F(t)),$\ldots$,$c_n$(F(t)) for the dimension of the cohomology modules $H^iF(t)$ and for the Castelnuovo-Mumford regularity of F; these polynomial bounds only depend only on $c_1(F)$, $c_2(F)$, the splitting type of F and t.