References
- http://kutacc.kut.ac.kr/~sunghyu/data/hw/HW-P5-48-72.pdf
- http://kutacc.kut.ac.kr/~sunghyu/data/hw/HW-SHRM.pdf
- D. Britz, T. Britz, K. Shiromoto, and H. K. Sorensen, The higher weight enumerators of the doubly-even, self-dual [48, 24, 12] code, IEEE Trans. Inform. Theory 53 (2007), no. 7, 2567-2571. https://doi.org/10.1109/TIT.2007.899509
- J. Cannon and C. Playoust, An Introduction to Magma, University of Sydney, Sydney, Australia, 1994.
- S. T. Dougherty, T. A. Gulliver, and M. Oura, Higher weights and graded rings for binary self-dual codes, Discrete Appl. Math. 128 (2003), no. 1, 121-143. https://doi.org/10.1016/S0166-218X(02)00440-7
- S. T. Dougherty and R. Ramadurai, Higher weights of codes from projective planes and biplanes, Math. J. Okayama Univ. 49 (2007), 149-161.
-
S. T. Dougherty and K. Shiromoto, MDR codes over
$Z_k$ , IEEE Trans. Inform. Theory 46 (2000), no. 1, 265-269. https://doi.org/10.1109/18.817524 - M. Grassl, Bounds on the minimum distance of linear codes, online available at http://www.codetables.de. Accessed on 2008-03-09.
-
T. Helleseth, T. Klove, and J. Mykkeltveit, The weight distribution of irreducible cyclic codes with block length
$n_1((q^l − 1)/N)$ , Discrete Math. 18 (1977), no. 2, 179-211. https://doi.org/10.1016/0012-365X(77)90078-4 - H. Horimoto and K. Shiromoto, A Singleton bound for linear codes over quasi-Frobenius rings, Proceedings of the 13th International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, Hawaii (USA), 51-52 (1999).
- W. C. Huffman and V. S. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
- T. Klove, Support weight distribution of linear codes, A collection of contributions in honour of Jack van Lint. Discrete Math. 106/107 (1992), 311-316.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes I, II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
- G. McGuire and H. N. Ward, The weight enumerator of the code of the projective plane of order 5, Geom. Dedicata 73 (1998), no. 1, 63-77. https://doi.org/10.1023/A:1005088712217
- H. G. Schaathun, Duality and support weight distributions, IEEE Trans. Inform. Theory 50 (2004), no. 5, 862-867. https://doi.org/10.1109/TIT.2004.826673
- J. Simonis, The effective length of subcodes, Appl. Algebra Engrg. Comm. Comput. 5 (1994), no. 6, 371-377. https://doi.org/10.1007/BF01188748
- M. A. Tsfasman and S. G. Vladut¸, Geometric approach to higher weights, IEEE Trans. Inform. Theory 41 (1995), no. 6, part 1, 1564-1588. https://doi.org/10.1109/18.476213
- L. R. Vermani, Elements of Algebraic Coding Theory, Chapman and Hall Mathematics Series. Chapman and Hall, Ltd., London, 1996.
- V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory 37 (1991), no. 5, 1412-1418. https://doi.org/10.1109/18.133259