References
- G. Alessandrini, Remark on a paper by H. Bellout and A. Friedman, Boll. Un. Mat. Ital. A (7) 3 (1989), no. 2, 243-249.
- H. Bellout and A. Friedman, Identification problems in potential theory, Arch. Rational Mech. Anal. 101 (1988), no. 2, 143-160.
- N. L. Biggs, Algebraic Graph Theory, Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1993.
- N. L. Biggs, Potential theory on distance-regular graphs, Combin. Probab. Comput. 2 (1993), no. 3, 243-255. https://doi.org/10.1017/S096354830000064X
- N. L. Biggs, Algebraic potential theory on graphs, Bull. London Math. Soc. 29 (1997), no. 6, 641-682. https://doi.org/10.1112/S0024609397003305
- J. A. Bondy and R. L. Hemminger, Graph reconstruction|a survey, J. Graph Theory 1 (1977), no. 3, 227-268. https://doi.org/10.1002/jgt.3190010306
- A. P. Calderon, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pp. 65-73, Soc. Brasil. Mat., Rio de Janeiro, 1980.
- F. R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathemat-ics, 92. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997.
- F. R. K. Chung, M. Garrett, R. Graham, and D. Shallcross, Distance realization problems with applications to internet tomography, J. Comput. System Sci. 63 (2001), 432-448. https://doi.org/10.1006/jcss.2001.1785
- F. R. K. Chung and R. P. Langlands, A combinatorial Laplacian with vertex weights, J. Combin. Theory Ser. A 75 (1996), no. 2, 316-327.
- F. R. K. Chung and K. Oden, Weighted graph Laplacians and isoperimetric inequalities, Pacific J. Math. 192 (2000), no. 2, 257-273. https://doi.org/10.2140/pjm.2000.192.257
- F. R. K. Chung and S.-T. Yau, Discrete Green's functions, J. Combin. Theory Ser. A 91 (2000), no. 1-2, 191-214. https://doi.org/10.1006/jcta.2000.3094
- D. M. Cvetkovic, M. Doob, I. Gutman, and A. Torgasev, Recent Results in The Theory of Graph Spectra, Annals of Discrete Mathematics, 36. North-Holland Publishing Co., Amsterdam, 1988.
- D. M. Cvetkovic, M. Doob, and H. Sachs, Spectra of Graphs, Theory and application. Pure and Applied Mathematics, 87. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980.
- P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, Carus Mathematical Monographs, 22. Mathematical Association of America, Washington, DC, 1984.
- S. L. Hakimi and S. S. Yau, Distance matrix of a graph and its realizability, Quart. Appl. Math. 22 (1965), 305-317. https://doi.org/10.1090/qam/184873
- V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 127. Springer-Verlag, New York, 1998.
- V. Isakov and J. Powell, On the inverse conductivity problem with one measurement, Inverse Problems 6 (1990), no. 2, 311-318. https://doi.org/10.1088/0266-5611/6/2/011
- J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2) 125 (1987), no. 1, 153-169. https://doi.org/10.2307/1971291
Cited by
- On the Solvability of the Discrete Conductivity and Schrödinger Inverse Problems vol.76, pp.3, 2016, https://doi.org/10.1137/15M1043479
- Monopoles, Dipoles, and Harmonic Functions on Bratteli Diagrams pp.1572-9036, 2018, https://doi.org/10.1007/s10440-018-0189-7