Proceedings of the KIPE Conference (전력전자학회:학술대회논문집)
The Korean Institute of Power Electronics
- Semi Annual
Domain
- Electricity/Electronics > Electric and Electronic Components
1997.07a
-
PWM(Pulse Width Modulation) 컨버터의 제어에 있어서, 입력전압의 왜곡을 고려하지 않을 경우, 시스템의 성능 저하를 초래하게 된다. 본 논문은 왜곡된 3상 입력전압이 PWM 컨버터에 미치는 영향을 분석하고, 성능을 개선하기 위한 제어기를 설계한다. 제안된 방식은 단위 역률을 만족시키면서, THD(Total Harmonic Distortion) 및 DC-link 전압의 저차 ripple을 감소시킨다.
-
In this paper, the operation regions of a three-phase voltage-source PWM converter are defined: linear modulation region, allowed current region, linear control region, unity power-factor region, and power-factor decreasing region. Particularly, the power-factor decreasing region is first examined and defined as the region where both the sinusoidal input current control and the stable DC link voltage regulation can not be obtained with a unity power-factor operation. To avoid these undesirable effects, the optimal current vector is derived, which ensures the sinusoidal input current and the stable DC link voltage regulation with maximum power-factor available, and, in consequence, it extends the operation region of the PWM converter. The validity of the proposed control scheme is proved by the computer simulation.
-
Due to several advantages of Pulse Width Modulated(PWM) Converter, such as unity power factor with low-harmonics and energy regeneration, PWM converter has been widely used in industrial application. In every application of energy conversion equipment, the design and implementation must be carried out considering performance and cost. High quality with low cost is the best choice for energy conversion equipment. High dc link voltage can reduce inverter and motor side losses and system dimension compare to low dc link voltage. Analog controller can make PWM converter cheaper without considerable degradation of the performance than digital controller. This paper shows the simplified analog controller-for 600V dc link voltage using stationary reference frame control and the simulation results.
-
Multilevel Inverter for the application of IM system is modeled, analyzed the harmonics component of output current at SIMULINK environment. In this paper Optimum of fc, M in 5-Level PWM Inverter is proposed.
-
In this paper, instantaneous controller of a single-phase PWM converter is realized using DSP. The stable PI gain of the input current and the DC link voltage control system is designed. The DC link voltage control system can be designed in continuous-time domain. But as for the input current control system, the descretizing effect cannot be ignored so it must be designed in descrete-time domain considering the calculation time. The capacitance estimating algorithm which can be acquired through the ripple voltage is proposed. By this algorithm the DC link capacitance can be estimated even under the transient state. Experimental results show the input power factor of 99.1% and the voltage variation rate of
$\pm$ 5% according to the load variation. -
With the development of semiconductor devices, adaptation of microcontroller prevails in industrial area. But in arc welding industry, there has not been much progress in adoption of microcontroller technology. There fore, this paper shows the application of digital control technology to welding machine. This paper presents the design of microcontroller that is appropriate for three phase
$CO^2$ gas metal ar welding machine. By using microcontroller in$CO^2$ gas metal arc welding machine, the overall cost can be reduced compared to analog type one. Also TMS370C850 microprocessor is used as overall micrecontroller for the arc welding machine. -
Along with the rapid growth in microelectronics and power electronics technologies, various advanced control methods have been successfully implemented in real time and shown to be useful in controlling CO2 arc welding systems with high dynamic performance. In this paper, the slope of welding currents is controlled not to be so high in the case of short circuit welding mode. This results in less spatter. In addition, the data-base is constructed for the optimal welding conditions.
-
The low frequency pulsed MIG welding process of new current waveform control to switch over unit pulse conditions (pulse current, pulse duration) in the fixed cycle was developed and its effect were investigated for aluminium and its alloy. By using this new welding process, the bead appearance having clear ripple pattern, such as TIG welding bead can be obtained and the gap tolerance of lap and butt welding joint can be expanded.
-
One of the drawbacks of using diode-bridge rectifiers in the unity interface, is the line-current harmonic distortion caused by the nonlinear nature of the rectifier operation. So, a PWM converter for the power factor correction is analysed for unity power factor as well as low cost design, which enable to meet the limits of international standards.
-
In general, Vector control of synchronous reluctance motor(SynRM) is performed under the assumptions that all the parameters are constant and magnetizing flux saturation and iron loss effect can be negligible. Under these assumptions, however, torque nonlinear characteristic can be a possible performance deterioration when precision torque control is needed and operating speed is high. This paper proposes the method, in the Synchronous Reluctance Motor (SynRM), which select appropriate stator d,q-axis currents that the influence of iron core loss on the developed torque can be minimized, and shows that the proposed method is comparable to the algorithm which compensates the iron core loss effect.
-
A new approach to the position sensor elimination of PM synchronous motor drives is presented in this study. Using the position sensing characteristics of PMSM itself, the actual rotor position as well as the machine speed can be estimated by adaptive flux observer and used as the feedback signal for the vector controlled PMSM drive. The adaptive speed estimation is achieved by model reference adaptive technique. The adaptive laws are derived by the Popov's hyperstability theory and the positivity concept. In order to verify the effectiveness of the proposed scheme, computer simulations are carried out for the actual parameters of a PM synchronous motor and the results well demonstrate that the proposed scheme provides a good estimation value of the rotor speed without mechanical sensor. It is also shown that the actual rotor position as well as the machine speed can be achieved under the variation of the magnet flux linkage. Since the flux linkages are estimated by the adaptive flux observer and used for the identification of the rotor speed, robust estimation of the rotor speed can be performed.
-
Generally, we often use a speed sensor based on a rotary encoder and we can obtain a speed information by counting the increased or decreased number of encoder pulses in a sampling period. However, these speed measurement systems do not inherently produce a true, instantaneous speed information and them the speed ripple is generated by speed measurement errors. In order to overcome this problem, speed observer is used for the accurate speed measurement and improvement of speed ripple for Permanent Magnet Synchronous Motor (PMSM) in this paper. Speed observer estimates the instantaneous speed at each sampling instant. This estimated speed signal is then used as the speed feedback signal for the speed loop control. The proposed speed observer system is proved simulation using SABER simulation S/W.
-
A DSP-based nonlinear speed control of a permanent magnet synchronous motor(PMSM) which is robust to unknown parameter variations and speed measurement error is presented. The model reference adaptive system(MRAS) based adaptation mechanisms for the estimation of slowly varying parameters are derived using the Lyapunov stability theory. For the disturbances or quickly varying parameters, a quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of the PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of a PMSM drive is designed and compared with the conventional controller. To show the validity of the proposed control scheme, simulations and experimental works are carried out and compared with the conventional control scheme.
-
The inverter fed BLDC(Brushless DC) motor has been increasingly applied to industry and home appliances due to the advance of power electronics and permanent magnet technology, and its high efficiency and good acoustic noise characteristics. The BLDC motor and drives, however, require the rotor position sensors that may cause some problems such as the high cost and space. In this paper, sensorless algorithm for an interior permanent magnet BLDC motor is proposed. The maximum torque per ampere operation with advance angle considering load torque and speed was simulated and verified through the experiment.
-
A robust position control system for a BLDC motor using new sliding mode control strategy is presented. Using the new variable structure system, reaching phase problem is eliminated and performance is largely improved. The simulation results show the validity of proposed scheme.
-
A robust speed control scheme for a brushless DC(BLDC) motor using an adaptive input-output linearization technique is presented. By using this technique, the nonlinear motor model can be linearized in Brunovski canonical form, and the desired speed dynamics can be obtained based on the linearized model. This control technique, however, gives an undesirable output performance under the mismatch of the system parameters and load conditions. For the robust output response, the controller parameters will be estimated by a model reference adaptive technique where the disturbance torque and flux linkage are estimated. The adaptation laws are derived by the Popov's hyperstability theory and positivity concept. The proposed control scheme is implemented on a BLDC motor using the software of DSP TMS320C30 and the effectiveness is verified through the comparative experiments.
-
A new control method for the robust position control of a brushless DC(BLDC) motor using the asymptotically stable adaptive load torque observer is presented. A precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method. And the application of the load torque observer is published in [1] using fixed gain. However, the flux linkage is not exactly known for a load torque observer. Therefore, a model reference adaptive observer is considered to overcome the problem of the unknown parameter in this paper. And stability analysis is carried out using Liapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current having the fast response.
-
The circuit effects due to the transformer primary side series equivalent inductance in the Zero Voltage Switching Pulse Width Modulated Half Bridge DC/DC Converter and its impact on the effective duty are analyzed. The steady state equations and the small signal model of the converter are derived incorporating the effects of the complementary control and the utilization of transformer primary side series equivalent inductance. The open plant dynamics are analyzed on the basis of the model derived. The model predictions are confirmed by experimental measurements.
-
This Paper is concerned on developing DC-DC converter using ZVS-FB-PWM Converter. The converter output is 28V and regulated by phase shift control methode. MOSFET is used by the main switching device and high frequency transfomer is made for operating at 300㎑ switching frequency. When the load vary widely, converter's ZVS characteristic is expressed by experiment result.
-
This paper was described about principle and form of proposed circuit made use of soft switching technology ZVS(Zero Voltages Switching) and ZCS(Zero Current Switching) to reduce turn on and off loss at switching. Also, the analysis of the proposed circuit is described generally by using normalized parameter and basic operating principle and driving characteristics have been evaluated as to switching frequency and load p arameter. Based on the characteristics value, a method of circuit design is proposed. In addition, Pspice's simulation and experimental waveforms are compared with theoretical ones. The experimental results shows that the proposed Inverter can be used practically such as power source system for induction cooker etc.
-
The main switch of high-frequency boost converter may be failed because the high switching current or voltage can damage this switch. The high switching stress can be reduced by snubber circuit. In this paper, a new passive snubber circuit which can recover trapped snubber energy without added control is proposed for boost converter. The control of boost converter with proposed snubber is the same as the conventional one. In addition, the energy recovery circuit can be implemented with a few passive components. The analysis for proposed circuit is presented, and the validity of the circuit is verified through simulation and experiment.
-
McT는 MOS-게이트형 사이리스터로써 MOS-게이트형 턴-온 및 턴-오프 특성과 낮은 도통 전압을 나타내는 소자이다. 그러나 SOA(Safe Operation Area)가 상대적으로 작기 때문에 스너버 회로를 필요로 한다. 본 논문에서는 간단한 MCT PSPICE 모델을 사용하여 스위칭 특성과 RCD 스너버의 특성을 분석하였고 스너버 회로 설계방식을 제안하였다.
-
A highly efficient single-phase/three-phase compatible ac-to-dc converter is proposed and analyzed, which includes three identical single-phase both soft-switched dc-to-dc converter with boost converter as a pre-regulator for input power factor correction (PFC). The proposed converter structure provides a cost reduction and easy implementation of compatibility between single-phase 220V and three-phase 220V/380V with their inputs in delta or wye connections.
-
Modeling and Simulation with a Variable Speed Drive System of a Electric Motor Using MATLAB/SIMULINKThe variable speed drive system of a electric motor is popular in industry due to its economical aspect and simplicity of implementation, comparing with a steam turbine or the other engine driven. For a large pumping load like a feedwater pump rated about or more than 20,000㎾, a synchronous motor could be primarily considered. In this paper, we studied the modelling of a variable speed drive system consisted with a load commutated inverter(LCI) and a brushless sailent pole rotor synchronous motor(SM) using MATLAB/SIMULINK. Simulation was performed with a small SM motor parameters.
-
Pspice is not offered a library of mechanical factor like DC Motor, Induction Motor which is needed in Power Electronics field. Therefore, Induction Motor was made library by Equibalent circuit in this study. This model is applied in Voltage-Type inverter and is investigated its characteristics. IGBT is tested by two methods of Macro and Micro Modeling as semiconductor. PWM signal is used of pulse signal. Voltage and current, speed was simulated for assurance of model.
-
This thesis proposed a speed control system for induction motors robust to variations in torque and parameters by feedforward compensating the current portion of load torque, adding a load torque observer to the conventional PI controller in the indirect vector controlled induction motor system. In conclusion, this thesis demonstrate the improved transient characteristic to variations in reference speed and load torque, compared to the conventional PI control method, by means of the feedworward control of the estimated load torque.
-
This paper proposed the vector controller of induction motors using one chip microprocessor. For developing a small and cheep speed control system, we use the one chip microprocessor 80C196MC. By using the one chip microprocessor we can make an inexpensive and small-sized vector controller for induction motors. We apply indirect vector control method and space vector modulation method to this system. The experimental results show that the proposed inverter has high performance features.
-
For high performance ac drives, the speed sensorless vector control and the stator flux orientation concept have received increasing attention. This paper presents a new method of estimation the speed of AC induction machine(IM). To improve the speed estimation characteristics, accurate stator resistance variation is considered. The effectiveness of the proposed method is verified computer simulation.
-
A Single phase induction motor is the predominant fractional horsepower power rated, extensively used in domestic and industrial application. For example, these motors provide the motive power to washing machines, fans, refrigerators, etc. In this paper, single phase induction motor input current was detected by a small current transformer and determined TRIAC gate signal by using op-amp analog circuit. The soft-start strategy is based on limited auxiliary current angle during starting period in the closed-loop control. The Simulation and experimental result show the motor's starting characteristics of the proposal starting system and are compared with centrifugal switch starting motor.
-
This paper presents a design method of the continuous inertial binary observer which includes the rotor flux and speed estimations. The sliding observer based on the variable structure theory ensures the robustness of disturbance and is applied for the method to keep an insensitivity for the variations of parameter. Sliding observer, however, has a high-frequency chattering deteriorating the state estimation performance. To reduce the chattering on the sliding surface in sliding observer and improve the estimation performance, binary observer scheme which has main advantages such as the absence of high-frequency chattering and the finite gains is applied in this paper. Computer simulation results show the effectiveness of binary observer proposed here for the induction motor drives.
-
In the speed control system of motors using the low resolution rotary encoder, the period of encoder pulse becomes longer than the sampling time for speed control in the range of very low speed. Therefore, it is difficult to obtain accurate speed information. In this paper, the speed estimating method at the very low speed region using reduced order torque observer, which has been widely used, is examined. The results of simulation show that the characteristics of the speed control at the very low speed region is improved by using the reduced order torque observer.
-
In this paper, a instantaneous speed measurement method using a three phase sinusoidal encoder is described and it's simulations are developed. The proposed method can easily detect the AC motor speed by using that the encoder is propotion to the AC motor speed. The performance of proposed method is confirmed by computer simulation and experiment results. The high accuracy of the optimum control system, AC motor speed detection is designed and proposed.
-
In the case of synchronous machines, certain power system disturbances cause the induced rotor current to assume negative values when no static converter is present. A converter, however, prevents negative current from flowing, so that overvoltages occur. The overvoltages can be effectively limited as crowbar circuit using GTO. This newly proposed crowbar circuit with current limiting resistor absorbs energy when overvoltage comes from power system repeatedly and verified through experiment
-
Until now, environmental problem has become more and more serious, and acoustic noise is one of environmental pollutions. For many years, ANC(Active Noise Control) has been made to reduce this noise. In this paper, active silencer using switching method is studied. This silencer is composed of single-phase full bridge inverter to drive cancelling loudspeaker. The inverter is controlled to reduce noise by ramp comparison control method. At the vacuum cleaner, noise control with FFCS(Feed-Forward Control Structure) is applied and geometric arrangement is replaced to avoid unstability of FFCS.
-
This paper describes an study electric injection system for diesel engines. It is needed effective fuel injection which controls the solenoid valve of fuel pump. To solve this, this paper proposes DCC-PWM method which can realize fast reply and low holding current for solenoid valve on/off. For the proposed design method, simulation tools of ACSL are used to analyze the system. And the single-chip microcomputer is used to reduce the size of controller and to improve flexibility. And the system's validity can be verified through the experimental results.
-
The paper deals with the design and evaluation of a new static-exciter for generator excitation systems to improve the steady-state and transient stabilities. It increases or maintains the generator field current by boosting the field voltage in the case of an input AC line voltage drop during and immediately after a fault. The validity of the proposed excitation system is verified with computer simulation. The simulation results of the stability analysis on the generator with the proposed exciter is better than that of a conventional static exciter and a conventional AC exciter. Also, this proposed exciter can be simply implemented and controlled by modern power electronics technology.
-
Localized communication networks for office automation, security monitoring, environmental management of buildings, computer communications, and other applications enjoy every increasing demand. This paper proposes a direct sequence spread spectrum communication system for use in power line data transmission. Advantages of power distribution circuits include reasonably universal coverage and easy access vis a standard wall plug. Disadvantages include limited communication bandwidth, relatively high noise levels, and varying levels of impedance, noise, and attenuation. Spread spectrum signalling provides immunity to narrow-band signal impairments and multiplexing capability. Our prototype power line communication module supports completely physical and data link layers based on the international standard ISO 10368 for reliable high-speed power line communication system. Moreover it provides useful functions to compose a plant monitoring and control system. All the circuits of the communication module are included in one compact circuit. Thus a functional communication system for the power line plant monitoring and control is implemented.
-
At present, high frequency electronic ballast are widely used to drive the fluorescent lamp at high frequency for improving light quality. The electronic ballast mainly consist of an inverter stage with a load resonant circuit. This paper derives a lamp model consist of a voltage equation and a current equation. The proposed model is useful for an engineer to determine circuits and to analyze the performance of electronic ballast with high frequency operation. Simulation with PSPICE and experimentator and the high power factor of the proposed topology.
-
Unbalanced source voltages due to unbalanced loads in the 3-phase power system is decomposed into positive, negative and zero sequence components. Also, assuming there is no neutural path in the system, the zero sequence component is not shown. Therefore, it is possible to compensate unbalanced source voltage by canceling the negative sequency component of the voltages of the source. In this paper, an algorithm compensating unbalanced source voltages by canceling the negative sequence component is presented and analysis of instantaneous voltage compensator using 3-phase PWM inverter is carried out through computer simulation.
-
The relation between instantaneous active/reactive powers and currents is defined by voltage mapping matrix in three-phase four-wire systems. Control strategies for an active filter without energy storage components are proposed on the basis of mapping matrices. It can compensate for the zero-sequence current, irrespectively of whether or not a zero-sequence voltage exists in a three-phase four-wire system.
-
An important assumption for the active power filter design using instantaneous power theory and the d-q transformation method in a 3-phase power system is based on balanced 3-phase system. However, under pratical conditions, the 3-phase power system can not be continuously balanced due to unbalanced loading. In this paper, a method to control the 3-phase active power filer using instantaneous power theory and the d-q transformation under unbalanced power system is presented and the theoretical results are verified by simulated results.
-
In this paper, the new filter that reduced output ripple to zero is proposed. This filter is composed of transformer and capacitor. The operating mode is verified with theoretical analysis of low ripple filter and computer simulation. DC-DC converter of input voltage DC 100[V], output 30[V]/30[A], switching frequency 20[KHz] is manufactured. In the result, computer simulation analysis is same to experimental result.
-
In this paper, soft switching high power factor buck converter is proposed. This converter is composed of diode rectifier, a input capacitor can be small enough to filter input capacitor can be small enough to filter input current, buck converter with loss less snubber circuit. Converter is operated in discontinous conduction mode, turn of of the switching device is a zero current switching(ZCS) and high power factor input is obtained. In addition, zero voltage switching(ZVS) at turn of is achieved and switching loss is reduced using loss less snubber circuit. The capacitor used in the snubber circuit raised output voltage. Therefore, proposed converter has higher output voltage and higher efficiency than conventional buck type converter at same duty factor in discontious conduction mode operation.
-
Novel ZVT Full Bridge PWM Boost Converter with Active Clamp for Single Stage Power Factor CorrectionA novel zero-voltage-switching(ZVS) isolated PWM converter for single stage power factor correction (PFC) is presented to improve the performance of the previously presented ZVT converter[5]. A simple clamp circuit in the primary side provides zero-voltage-switching condition to all semiconductor devices. This ZVS is achieved with minimum device voltage and current stresses. Operation principle, control strategy and features of the proposed converter are presented and verified by the experimental results from a 1.5 ㎾, 100 KHz laboratory prototype
-
The conventional high frequency phase-shifted full bridge dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval. Due to this circulating current, RMS current stress, conduction losses of transformer and switching devices are increased. To alleviate this problem, this paper provides a circulating current free type high frequency soft switching phase-shifted full bridge (FB) dc/dc converter with energy recovery snubber (ERS) attached at the secondary side of transformer. The energy recovery snubber (ERS) adopted in this study is consisted of three fast recovery diode(Ds1, DS2, Ds3), two resonant capacitor (Cs1, Cs2)
-
To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved soft switching forward converter is proposed. The proposed converter is constructed by using non-dissipative snubbers in parallel with the main switch and output diode of the conventional forward converter. Due to the use of the non-dissipative snubbers in the primary and secondary, the proposed converter achieves zero-voltage and zero-current switching for all switching devices without switching losses and output diode recovery losses. The complete operating principles, theoritical analysis, experimental results will be presented.
-
Driving the electrodeless fluorescent lamp, the high ac voltage with high frequency is required. The linear power amplifier has been widely used as a driving circuit of electrodeless fluorescent lamp. However, the low efficiency of the power amplifier causes th driving circuit to be replaced by a PWM switching inverter. In order to use a PWM switching inverter as the driving circuit of an electrodeless fluorescent lamp, the high switching frequency is required. But due to the switching loss at switches of the inverter, the limitation of high switching frequency appears in the inverter. One solution to this limitation is to reduce the switching loss by using the zero voltage switching technique. In this paper, zero voltage switching resonant inverter for driving an electrodeless fluorescent lamp is discussed. The results of analysis about the inverter are presented and the equations for design are established. And the validity of the analyzed results are verified through the experiment.
-
High Voltage High Current Pulsed Electric Fields (HVHC-PEF) is a promising technology for the non-thermal pasteurization of foods and a sound complement or replacement to traditional thermal pasteurization, which inactivates bacteria and other microorganisms harmful to humans, but also degrades color, flavor, texture and nutrients. Foods can be pasteurized with pulsed electric fields at ambient or refrigerated temperatures for a short treatment time of seconds or less and the fresh-like quality of food is preserved. Although successful is laboratory tests, applying HVHC-PEF to food pasteurization on a large scale presents many unresolved engineering problems. In this paper the design considerations for 25kV 1kA class HVHC-PEF pasteurization equipment are anlyzed and experimental results are discussed.
-
This paper presents real time digital signal processor(DSP) control of UPS system feeding processor(DSP) control of UPS system feeding nonlinear loads to provide sinusoidal inverter output voltage. The control scheme is composed of an rms voltage compensator, the load current harmonics feed-forward loop for the cancellation of output voltage harmonics, and the output voltage harmonics feedback loop for system stability. The controller employs a Texas Instruments TMS320C40GFL50 DSP.
-
본 논문은 통신용전원장치와 같은 대용량의 DC 전원 장치에 적용하기 위하여 3상용 6 Switch로 구성된 Bridge로써 대용량 DC-DC converter에 적합한 Topology에 관한 것이다. 기본 동작은 기존의 Phase shifted ZVS PWM 방식을 사용하며, Bridge의 바깥쪽 양쪽암의 펄스폭을 제어하는데, 같은 펄스를 동시에 주는 방식과 각각 별도로 제어하는 방식, 두암의 위상을 지연시키는 방식에 관하여 연구하였다. 제안된 Topology들은 컴퓨터 시뮬레이션을 수행하여 그 동작특성을 확인하였고, 대용량에 적용할 수 있음을 확인하였다. 장치의 용량은 출력 500[A]/30[V] 회로를 구성하여 각각의 경우에 대하여 컴퓨터 시뮬레이션 결과를 제시하였다.
-
In this paper theoretical foundation of distribution STATCON, the operating characteristics of D-STATCON, the overview of control technologies for power factor correction of D-STATCON, and the PWM current control of D-STATCON and simulated results are given to shows the practical feasibility of a Flexible AC Transmission System and Distribution Static Condenser.
-
발전설비의 대형화로 인하여 소내소비 전력량이 점점 증가하고 있는 추세이며 대용량의 화력발전소라 하더라도 기저부하보다는 부하조정의 역할이 강해져 정격속도로 운전하던 팬, 펌프등을 필요 부하에 따라 회전수를 제어하여 전력절감을 꾀하여야 할 필요가 있다[1]. 이에 따라 생산기술개발 과제로 개발한 대용량 GTO 인버터 시스템을 서 인천복합화력발전소의 3상 6600V 1500KW 용량인 전동기 구동 해수펌프에 적용하기 위한 기술적 검토 내용과 계산된 전력 절감량을 제시하였다. 적용 시스템으로는 개발된 3상 660V 1MVA 단위 인버터를 병렬 운전시켜 2MVA의 용량으로 하였으며 인버터의 입출력 단에 변압기를 설치하여 강압 및 승압 시켜 사용하였다.[2]
-
서인천복합화력발전소의 해수펌프를 속도제어 하여 소내 소비 전력을 절감하고 전동기의 직입기동에 의한 스트레스를 줄이기 위하여 생산기술 개발 과제의 연구개발품 2MVA GTO 인버터를 실증 적용하였다. 적용 시스템은 단위 인버터 병렬운전으로 인버터의 입력측은 병렬다중 방식, 출력측은 직렬다중 방식으로 설계하였다. 인버터에 의한 운전 자료를 기준으로 소비전력을 산정하여 비교하였으며 그 적용 방법과 결과를 보인다[1][2].
-
In large system, design margin makes relatively price higher. So, optimal design through exact analysis of thermal behavior is needed. In this paper, we propose the equivalent load test facility using two inverter & converter system and inductors. Applying actual electrical profiles for motor drive, thermal characteristics of power converter fed AC motor drive are obtained, and the results are compared with simulation results.
-
This paper describes a dynamic var compensator to compensate the line reactance for power transmission and distribution system. The compensator consists of a voltage source inverter with dc capacitor, coupling transformers, and control circuit. The operation of compensator was verified by computer simulations with EMPT and experimental works with a scaled hardware model. The advantage of the proposed system is rapid and continuous regulation of the reactive power.
-
전기자동차의 구동장치는 모터, 인버터, 감속기 및 차동기어 등으로 구성되는데 모터는 주로 유도전동기와 영구자석형 동기전동기, 브러쉬리스 전동기 등이 사용되고 있다. 본 연구에서는 이 중에서 가격과 내구성 면에서 이점이 있는 유도전동기를 적용한 전기자동차의 전력시스템의 특성분석과 가속 성능에 대해 다루었다. 축전지, 유도전동기, 인버터로 구성된 전력시스템을 각각 모델링하고, 가속성능 개선을 위해 고속에서의 초대토크 알고리즘과 고전적 방법인 속도에 반비례하도록 자속을 제어하는 방식에 대해 각각 적용하여 차량의 가속성능을 예측, 분석하고 이를 현차시험을 통해 시험결과와 비교 제시하고자 한다. 본 연구에서는 주행 중에 축전지 전압 변동에 따라 유도 전종기의 고속 운전 영역 즉, 약계자 영역에서 전기자동차의 가속 특성이 어떻게 나타나는지를 고찰 하였다.
-
The SIV(Static InVerter) of the electric coach mainly consists of GTO type inverter. But, it is the drawback that GTO type inverter must have the complicated driving circuits. Recently, appearing the IGBT of high speed switching frequency, simple driving circuits, relative large capacity, GTO type inverter is changed IGBT type inverter. In this paper, IGBT type SIV substituting for the existing GTO type SIV is designed and producted. The experimental results are presented to verify the performance of the designed IGBT type SIV.
-
The purpose of this study is developing a converter which is able to convert a 300[KW] power, and is a DC power supply output a 1500[V] DC voltage for inverter driving. The power converter is driven by two converter serisely and keep a high power factor of power source. This system is haven all the characteristic of voltage source converter by having a processing ability of regenerating power. The two converters controls a PWM modulation and output voltage using a only one 16 bit DSP processor.
-
This paper is about improving characteristic of plant by using micro-step driver method in 5 phase step motor for satisfying the condition of low oscillation and high accuracy in soldering machine. We choose open loop control method for minimizing hardware system and use one chip microprocessor, power MOSFET nd some device to realize accurate micro-step driver system.
-
In this paper, Instantaneous voltage control method is proposed to reduce the torque ripple of a switched reluctance motor. This method is based on the sum control of the square of the phase currents in proposed converter. A proposed prototype SRM drive circuit is given and it's operation is analyzed. The experiments and simulations are performed to verify the capability of proposed principle.
-
In the industrial motor drive system, a shift torsional vibration si often generated when a motor and a load are connected with a flexible shaft. This paper treats the vibration suppression control of such a system. In this paper, the state feedback controller of the two-mass resonant system using the H
$\infty$ filter is proposed. The H$\infty$ filter is robust in noise and disturbance. Simulation results show the validity proposed controller. -
This paper is a study about motor technic of motion and feedforward control in order to shape cutting control on the machine tool. The shape error caused by delay of the servo system in the direction of radius at the time of circular cutting is reduced by feedforward control, shape error generated by the position command delay is minimized by using the acceleration/deceleration time constant after the interpolation. The study was verified to optimization of motion control on experiments of a vertical machining center of the machine tool.
-
This paper suggests the modified delay compensation scheme under the control input saturation in order to improve the control performance. This scheme uses the real estimated control input instead of the direct command control input. The simulation results show that this scheme can improve the current control performance under the delay time and the limited control input.
-
In this paper, controller for PWM converter considering unsymetrical input voltage is designed and current controller using LQ controller with conditional integrator is proposed. And the proposed current controller is compared with other current controller-predictive controller, decoupling PI controller. As simulation results, LQ controller with Conditional Integrator shows the improved performance for DC link voltage regulation through transient test of load variation. And when unsymeritrical input voltage is applied to converter with conventional current controller considering only symetrical input voltage, input current is distorted but it is showed that current controller considering unsymetrical input has robust control characteristics under phase voltage unbalance.
-
This paper present the design of a novel neural-network (NN) based pulse-width modulation (PWM) techniques for a three-level power converter of electric trains along with nonlinear mapping of essential switching patterns and fault tolerance, which are inherent characteristics of NNs. Considering the importance of safety, power factor and harmonics of electric train power converters, two-level type and three-level type of power converters using NNs are precisely investigated and compared in computer simulation. A computer simulation shows that a new current control scheme provides an improved performance over a fixed-band hysteresis current control in many aspects.
-
The windup phenomenon appears and results in the performance degradation when the PI controller output is saturated. A new anti-windup PI controller is proposed to improve the control performance of the variable-speed motor drives and it is experimentally applied to the speed control of a vector-controlled induction motor driven by a pulse width modulated(PWM) voltage source inverter (VSI). The integral state is separately controlled corresponding to whether the PI controller output is saturated or not. The experimental results show that the speed response has the much improved performances such as small overshoot and fast settling time over the conventional anti-windup technique. Although the operating speed command is changed, the similar control performance can be obtained by using the PI gains selected in the linear region.
-
In this paper, solar array of KOMPSAT was modeled and analyzed. The modeling results of solar array was achieved by neural algorithm, which is powerful of nonlinear system with a few data sets. The algorithm was analyzed and verified by simulation considering on solar cell data of KOMPSAT. The characteristics VI curves and power generation of solar array are analyzed by using the modeling.
-
In this paper, we compose of the stepdown chopper and the current source inverter. Because dc side current of the current source inverter pulse with twice frequency of utility, we control that modulation factor of chopper is pulsed twice frequency. Therefore if voltage across the dc reactor equal to zero, it tis decreased. And we control modulation factor of the chopper to operate at maximum power point around of solar cell.
-
This paper presents a 3kW grid-connection photovolatic power generation system and its simple topology. The system controlled by single chip micropocessor.
-
This paper performed simulation of the Hybird power generation system and constructed a least component and analysis of the Hybird power system with computer program. In this paper, we performed simulation economic analysis of hybird power system.
-
The primary concern in designing any PV system is the determination of its optimum size. It is generally inadequate to use monthly or daily average insolation, and estimated number of continuous no sun days to determine array and battery capacities because the dynamic behavior of PV system and the stochastic nature of solar radiation also significantly influence the required array and storage capacity. Simulation method uses hourly meterological data and hourly load data to simulate the energy flow in a PV system, and predicts the system reliabilities under assumed array and battery sizes. Stand alone system for operating efficiency analysis of Photovoltaics system were discribed in this paper.
-
Recently, according to developing industry and life style, power consumption have been increased year after year. Currently these much power demand from power consumer is weakening the allowable power reserve margin in summer. As one of the remedies about this problem, the small scale utility interactive photovoltaic system(UIPVS) is considered for auxiliary power source. For this system one of problems to be solved technically, system operating power factor. Generally in case of small scale system, system is operated in unity power factor. But this unity power factor operating mode decrease power factor viewed from utility because UIPVS supply active power to utility. Therefore this paper propose UIPVS with power factor correcting function and this system is analyzed.
-
Single-phase and three-phase AC to DC power converters are becoming frequently used for high voltage/high power applications such as telecommunications. They often require input/output transformer isolation for safety, a unity input power factor for minimum reactive power, free input harmonic currents fed back to the AC Power distribution system and, finally, high efficiency and high power density for minimum weight and volume. The proposed boost converter for power factor correction (PFC) provides an unity input power factor, low harmonic distortion and high efficiency along with reduced volume and weight. Single-phase 220VAC input/380VDC 1KW output prototype is constructed and experimental results will be verified with those of PSpice simulation.
-
Design of single stage AC/DC converter with high power factor and high efficiency based on half-bridge topology for low power application is proposed. To obtain design equations, modelling and detailed analysis are performed. The proposed converter gives and power factor and high efficiency by employing aynchronous rectifiers. To verify the performances of the proposed converter 90W-converter has been designed. This prototype converter meets IEC555-2 requirements with near unity power factor.
-
A new method to improve the THD of the three phase rectifiers is introduced in this paper. The main features of this paper are low cost, high efficiency and simplicity. The proposed 3 bidirectional switches and their operation are presented. A simulation and experiment results show its good action.
-
In this paper, we propose a new single-stage isolated switching power supply. The proposed converter reduces the diode conduction loss and offer both the high input Power factor and the direction conversion from the ac line to a dc output voltage. This paper present the Operational principle, analysis and control and experimental results of a 100W prototype.
-
This paper proposed that a AC-DC Converter topology of high power factor with soft switching mode operates with four chopper connecting a number of parallel circuit. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer is included to confirm the validity of the analytical results. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in partial resonant circuit makes charging engergy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used.
-
A new single-stage/single-switched forward converter with magnetic coupled nondissipa-tive snubber is proposed. The proposed converter gives the good power factor correction (PFC), low current harmonic distortion, and tight output voltage regulation. The prototype shows the IEC 555-2 requirements are met satisfactorily with nearly unity power factor. This proposed converter with magnetic coupled nondissipative snubber is particularly suited for low power level power supply applications.
-
This Paper proposes a novel sinusoidal converter which improves input power factor and input current waveform without any complicated switching modulation such as a pulse width modulation or a complicated feed-back control. It is composed of a full bridge diode, a pair of capacitors, a pair of inductors and a pair of switching devices. The configuration and control strategy are both simple however, the sinusoidal converter effectively reduces reactive power and hamonics included in a input line current. Excellent behavior of the proposed converter is verified by theoretical analysis and experimental results.
-
Recently the needs the interest for the high speed motor drive system is increased in many different fields. So in this paper, the high speed motor drive system is proposed to drive the high speed motor using DSP which was developed in order to process datas at high speed. The motor drive is performed using a variable V/f PWM control.
-
This paper describes the bending traveling-wave type ultrasonic motor which generates the traveling wave by combining two standing waves with phase difference time and space. In +2
$0^{\circ}C$ ~3$0^{\circ}C$ , the operation characteristic of USM has represented normal condition. But in the other temperature, the operation characteristic of USM has abnormal condition, that is driving frequency, drive current and r.p.m are down. The recent USM has controller without temperature compensation. This study aimed at fuzzy controller which must follow the frequency at operation temperature and then r.p.m and torque increased. -
-
이 논문은 초음파모터를 이용한 직접구동방식의 전완로봇 개발에 관해서 논하였다. 기어 감속 없이 느린 동작하에서 큰 힘을 제공하기 위해 진행파형 초음파모터를 액츄에이터로 사용하였다. 이 시스템에서는 환경과의 상호작용력에 의한 힘 피드백 제어는 사용하지 않고, 위치 정보만을 사용하였다. 크랭크 회전같은 접촉작업과 핑거의 협력작업에 대한 실험을 고찰하였다.
-
The good features of a switched reluctance motor(SRM) are appreciated by the appliance manufactures. And it is spread into a commercial and industries market. The few disadvantage of the motor is higher torque ripple and noise. This paper proposes an instantaneous torque control scheme to control a speed precisely. It adapts phase-locked loop (PLL) technique to control speed precisely. In this control scheme, the phase detector signal of the PLL regulates the switching dwell angle flexibly and the loop filter's signal controls adaptively the instantaneous switching voltage. Experimental results show that drive performance is good with low torque ripple.