낙상사고는 세계적으로 매년 42만 건 이상 발생하는 치명적인 사고이다. 따라서, 낙상 환자를 연구하고자 낙상환자의 손상외인코드와 주진단 S코드의 연관성을 찾고, 낙상 환자의 주진단 S코드 데이터를 가지고 손상외인코드를 예측할 수 있는 예측모델을 개발하였다. 본 연구에서는 강원특별자치도 강릉시에 있는 A 기관의 2020~2021년 2년간의 데이터를 받아 낙상에 관련된 손상외인코드 W00~W19까지 데이터만 추출하고, 낙상 손상외인코드 중 예측모형을 개발할 정도의 주진단 S코드를 가지고 있는 W01, W10, W13, W18 데이터를 가지고 예측모형 개발하였다. 데이터 중 80%는 훈련용 데이터, 20%는 테스트용 데이터로 분류하였다. 모형 개발은 MLP(Multi-Layer Perceptron)을 이용하여 6개의 변수(성별, 나이, 주진단S코드, 수술유무, 입원유무, 음주유무)를 입력층에 64개의 노드를 가진 2개의 은닉층, 출력층은 softmax 활성화 함수를 이용하여 손상외인코드 W01, W10, W13, W18 총 4개의 노드를 가진 출력층으로 구성하여 개발하였다. 학습결과 첫 번째 학습했을 때 31.2%의 정확도를 가졌지만, 30번째는 87.5%의 정확도를 나타냈고 이를 통해 낙상환자의 낙상외인코드와 주진단 S코드의 연관성을 확인할 수 있었다.