응시점을 통해 어떤 것을 보고 있는지 알 수 있다면 많은 정보를 얻을 수 있다. 응시 추적 기술의 발달로 응시점에 대한 정보는 다양한 응시 추적 기기에서 제공해주는 소프트웨어를 통해 얻을 수 있다. 하지만 실제 응시 깊이와 같은 정확한 정보를 추정하기란 어렵다. 응시 추적 기기를 통해 만약 실제 응시 깊이로 보정할 수 있다면 시뮬레이션, 디지털 트윈, VR 등 다양한 분야에서 현실적이고 정확한 신뢰성 있는 결과를 도출하는 것이 가능해질 것이다. 따라서 본 논문에서는 응시 추적 기기와 소프트웨어를 통해 원시 응시 깊이를 획득하고 보정하는 실험을 진행한다. 실험은 Deep Neural Network(DNN) 모델을 설계한 후 소프트웨어에서 제공하는 응시 깊이 값을 300mm에서 10,000mm까지 지정한 거리별로 획득한다. 획득한 데이터는 설계한 DNN 모델을 통해 학습을 진행하여 실제 응시 깊이와 대응하도록 보정하였다. 보정한 모델을 통해 실험을 진행한 결과, 300mm에서 10,000mm까지 지정한 거리별 297mm, 904mm, 1,485mm, 2,005mm, 3,011mm, 4,021mm, 4,972mm, 6,027mm, 7,026mm, 8,043mm, 9,021mm, 10,076mm로 실제와 비슷한 응시 깊이 값을 획득할 수 있었다.