지정맥 인식 기술은 손가락에 적외선 광을 조광하여 손가락에 있는 정맥 영상을 획득한 다음, 특징 추출, 매칭 등의 과정을 거쳐 개인을 인증하는 방법이다. 지정맥 인식을 위해 손가락 외각을 검출함에 있어 2차원 마스크(mask)를 기반한 2차원 컨볼루션(2-Dimension convolution) 처리방법은 저가(low cost)의 마이크로프로세서 또는 마이크컨트롤러에 적용할 때 많은 연산시간이 소요된다. 이러한 문제점을 개선하고 인식을 향상시키기 위해 본 연구에서는 2차원 마스크와 2차원 컨볼루션을 사용하지 않고 픽셀들 간의 차의 절대 값과 역치(threshold)를 기반을 둔 이동평균필터링, 가상의 코어점 기반한 ROI 추출법 등을 제안하였고, 제안된 방법의 성능을 평가하기 위해 600개 지정맥 영상을 사용하여 에지 추출속도와 ROI 영역 추출의 정확도 등을 기존의 방법들과 비교 평가 하였다. 그 결과, 제안된 방법의 처리속도가 기존의 방법보다 최소 2배 이상의 빠른 처리속도를 보였으며, ROI 추출의 정확도는 기존의 방법보다 6% 이상의 성능 향상을 보였다, 이러한 결과로부터 제안된 기법을 저가의 마이크로프로세서에 적용한다면, 빠른 처리속도로 높은 인식률을 제공할 것으로 판단된다.