빅데이터 시대에 정형데이터 뿐만 아니라 비정형데이터를 분석하는 것이 중요한 과제로 대두되고 있다. 정부기관이 생산하는 공문서도 텍스트 기반의 대형 비정형데이터로 빅데이터 분석의 대상이 된다. 기관 내부의 업무효율, 지식관리, 기록관리 등의 관점에서 공문서 빅데이터를 분석하여 유용한 시사점을 도출해 나가야 할 것이다. 그러나, 현재 공공기관이 보유 중인 공문서의 상당수가 개방포맷이 아니어서 빅데이터 분석을 하려면 비트스트림에서 텍스트를 추출하는 전처리 과정이 요구된다. 또한, 문서파일 내에 맥락 메타데이터가 충분히 저장되어 있지 못하여 품질 높은 분석을 하려면 별도의 메타데이터 확보 노력이 필요하다. 결론적으로 현재의 공문서는 기계가독(machine readable) 수준이 낮아 빅데이터 분석에 비용이 많이 들게 된다. 이 연구에서는 향후 공문서가 기계가독 수준을 높이기 위해서는 공문서의 개방포맷화, 기안문 서식의 표준태그화, 자기 기술(self-descriptive) 메타데이터 확보, 문서 텍스트 태깅 등이 선행될 필요가 있다는 점을 제안한다. 첫째, 문서가 스스로를 설명하기 위해 추가되어야 하는 메타데이터 항목들을 제시하고 이 메타데이터들이 기계가독형이 되도록 문서파일에 저장하는 방법을 제안한다. 둘째, 문서 내용 분석 시 자연어 처리에만 의존하지 않고 행정 맥락에 따라 중요한 키워드를 미리 국제표준 태그로 마킹하여 기계가독형이 되도록 하는 방안을 제안한다.