With the exhaustion of global IPv4 addresses, IPv6 technologies have attracted increasing attentions, and have been deployed widely. Meanwhile, new applications running over IPv6 networks will change the traditional traffic characteristics obtained from IPv4 networks. Traditional models obtained from IPv4 cannot be used for IPv6 network monitoring directly and there is a need to investigate those changes. In this paper, we explore the flow features of IPv6 traffic and compare its difference with that of IPv4 traffic from flow level. Firstly, we analyze the differences of the general flow statistical characteristics and users' behavior between IPv4 and IPv6 networks. We find that there are more elephant flows in IPv6, which is critical for traffic engineering. Secondly, we find that there exist many one-way flows both in the IPv4 and IPv6 traffic, which are important information sources for abnormal behavior detection. Finally, in light of the challenges of analyzing massive data of large-scale network monitoring, we propose a group flow model which can greatly reduce the number of flows while capturing the primary traffic features, and perform a comparative measurement analysis of group users' behavior dynamic characteristics. We find there are less sharp changes caused by abnormity compared with IPv4, which shows there are less large-scale malicious activities in IPv6 currently. All the evaluation experiments are carried out based on the traffic traces collected from the Northwest Regional Center of CERNET (China Education and Research Network), and the results reveal the detailed flow characteristics of IPv6, which are useful for traffic management and anomaly detection in IPv6.