With the increasing usage of cloud applications such as MapReduce and social networking, the amount of data traffic in data center networks continues to grow. Moreover, these appli-cations follow the incast traffic pattern, where a large burst of traffic sent by a number of senders, accumulates simultaneously at the shallow-buffered data center switches. This causes severe packet losses. The currently deployed TCP is custom-tailored for the wide-area Internet. This causes cloud applications to suffer long completion times towing to the packet losses, and hence, results in a poor quality of service. An Explicit Congestion Notification (ECN)-based approach is an attractive solution that conservatively adjusts to the network congestion in advance. This legacy approach, however, lacks scalability in terms of the number of flows. In this paper, we reveal the primary cause of the scalability issue through analysis, and propose a new congestion-control algorithm called FaST. FaST employs a novel, virtual congestion window to conduct fine-grained congestion control that results in improved scalability. Fur-thermore, FaST is easy to deploy since it requires only a few software modifications at the server-side. Through ns-3 simulations, we show that FaST improves the scalability of data center networks compared with the existing approaches.