With the development and wide application of hybrid network computing modes like cloud computing, edge computing and fog computing, the customer service requests and the collaborative optimization of various computing resources face huge challenges. Considering the characteristics of network environment resources, the optimized deployment of service resources is a feasible solution. So, in this paper, the optimal goals for deploying service resources are customer experience and service cost. The focus is on the system impact of deploying services on load, fault tolerance, service cost, and quality of service (QoS). Therefore, the alternate node filtering algorithm (ANF) and the adjustment factor of cost matrix are proposed in this paper to enhance the system service performance without changing the minimum total service cost, and corresponding theoretical proof has been provided. In addition, for improving the fault tolerance of system, the alternate node preference factor and algorithm (ANP) are presented, which can effectively reduce the probability of data copy loss, based on which an improved cost-efficient replica deployment strategy named ICERD is given. Finally, by simulating the random occurrence of cloud node failures in the experiments and comparing the ICERD strategy with representative strategies, it has been validated that the ICERD strategy proposed in this paper not only effectively reduces customer access latency, meets customers' QoS requests, and improves system service quality, but also maintains the load balancing of the entire system, reduces service cost, enhances system fault tolerance, which further confirm the effectiveness and reliability of the ICERD strategy.