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Abstract 
 

With the growing adoption of cloud-based technologies, maintaining the privacy and 
security of cloud data has become a pressing issue. Privacy-preserving encryption schemes are 
a promising approach for achieving cloud data security, but they require careful design and 
implementation to be effective. The integrated approach to cloud data security that we suggest 
in this work uses CogniGate: the orchestrated permissions protocol, index trees, blockchain 
key management, and unique Opacus encryption. Opacus encryption is a novel homomorphic 
encryption scheme that enables computation on encrypted data, making it a powerful tool for 
cloud data security. CogniGate Protocol enables more flexibility and control over access to 
cloud data by allowing for fine-grained limitations on access depending on user parameters. 
Index trees provide an efficient data structure for storing and retrieving encrypted data, while 
blockchain key management ensures the secure and decentralized storage of encryption keys. 
Performance evaluation focuses on key aspects, including computation cost for the data owner, 
computation cost for data sharers, the average time cost of index construction, query 
consumption for data providers, and time cost in key generation. The results highlight that the 
integrated approach safeguards cloud data while preserving privacy, maintaining usability, and 
demonstrating high performance. In addition, we explore the role of differential privacy in our 
integrated approach, showing how it can be used to further enhance privacy protection without 
compromising performance. We also discuss the key management challenges associated with 
our approach and propose a novel blockchain-based key management system that leverages 
smart contracts and consensus mechanisms to ensure the secure and decentralized storage of 
encryption keys.  
 
 
Keywords: Cloud, privacy and security, blockchain, homomorphic encryption, access 
control, key management. 
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1. Introduction 

The demand for safe and private cloud data management has expanded due to the quick 
development of cloud-based technologies [1]. As a result of the increase in cyber-attacks and 
data breaches, protecting the security and confidentiality of cloud data has become a top 
priority for both individuals and businesses. Researchers and industry experts have explored 
various approaches to achieving privacy-preserving cloud data security to address this 
challenge [2-4]. Cloud-based technologies have transformed how organizations and 
individuals store, process, and access data. By allowing remote access to computing resources 
and data storage, cloud computing has opened up new possibilities for collaboration, 
innovation, and scalability [5-7]. However, this convenience and flexibility also have inherent 
security and privacy risks. While there are many promising approaches to achieving privacy-
preserving cloud data security, there are also several challenges that must be overcome to 
ensure the effectiveness and practicality of these approaches [8].  

1.1 Key challenges associated with privacy-preserving cloud data security 
Usability and Performance: 
One of the main challenges of privacy-preserving cloud data security is balancing the need for 
safety with the usability and performance of cloud-based technologies [9]. Encryption and 
access control mechanisms sometimes result in increased processing time and decreased 
system performance, negatively impacting user experience and adoption. It is essential to 
strike a balance between the need for security and the need for usability and performance. 
Scalability: 
Another challenge of privacy-preserving cloud data security is scalability. As a growing 
amount of data is produced and kept on the cloud, there is a need for scalable solutions that 
can handle large volumes of data while maintaining privacy and security [10-12]. This requires 
efficient data structures and encryption schemes that can be scaled to meet the demands of 
cloud-based systems. 
Key Management: 
Effective key management is critical to privacy-preserving cloud data security. Encryption 
keys must be stored securely and managed effectively to guarantee the data's secrecy and 
integrity [13-15]. Centralized key management systems can be vulnerable to attacks and data 
breaches, so decentralized and blockchain-based key management systems are becoming 
increasingly popular. 
Interoperability: 
Interoperability is a challenge when it comes to privacy-preserving cloud data security. Cloud 
systems may use various encryption schemes or access control mechanisms, making 
integrating and managing data across different systems difficult. Interoperability standards and 
protocols can help to address this challenge, but more work is needed in this area. 
Compliance: 
Compliance with regulations and industry standards is critical in privacy-preserving cloud data 
security. Different industries and jurisdictions may have additional regulations and 
requirements for data privacy and security, making it difficult to implement a comprehensive 
approach to cloud data security [16]. Interoperability standards and protocols can help address 
this challenge, but more work is needed. 
Complexity: 
Finally, privacy-preserving cloud data security can take time and effort to implement. 
Encryption schemes, access control mechanisms, and key management systems all require 
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careful design and implementation to be effective. The system requires specialized knowledge 
and expertise, which may only be available to some organizations. Simplifying and 
streamlining the implementation process can help to overcome this challenge. 

1.2 Objectives 
The proposed method for privacy-preserving cloud data security aims to protect cloud data's 
privacy and security while maintaining high levels of performance and usability.  

• To enable secure computation on encrypted data while preserving privacy. 
• Implement precise access controls depending on user attributes by utilizing CogniGate 

Protocol. This gives cloud data access more flexibility and control, guaranteeing those 
with permission have access to sensitive data.  

• To store and retrieve encrypted data using an effective data structure. To guarantee 
that cloud data may be accessed swiftly and effectively without jeopardizing security 
or privacy. 

Researchers and industry experts have been exploring various approaches to achieving 
privacy-preserving cloud data security to address this challenge. Encryption to safeguard 
confidential information while in transmission or at rest constitutes a promising strategy. Data 
is encoded using encryption, so it cannot be read without a decryption key. Data is made secure 
even if it is intercepted or viewed without permission by encrypting it while it is sent online 
or kept there. However, traditional encryption methods have limitations regarding cloud data 
security. For example, if encrypted data needs to be processed or analyzed in the cloud, it must 
first be decrypted, which exposes it to potential security risks. Furthermore, traditional 
encryption methods do not provide granular access control, which means that anyone with 
access to the decryption key can access all the data. 

2. Related Work 
Privacy-preserving cloud data security is a field of research that seeks to develop methods and 
techniques for ensuring cloud data security. As cloud-based technologies are popular, the need 
for effective security measures becomes increasingly important. Cloud computing allows 
individuals and organizations to store and process data on remote servers accessed via the 
Internet. While cloud computing provides many benefits, such as cost savings, scalability, and 
flexibility, it also poses significant data privacy and security risks. Cyberattacks, data breaches, 
and unauthorized access are just some of the potential threats that cloud users face. One 
approach to addressing these challenges is privacy-preserving encryption. Data is encrypted 
using this method before being delivered to the cloud, ensuring that sensitive data remains 
private and secure. However, traditional encryption methods have limitations that can 
compromise cloud data security. 

An authentication along with an information security framework for the use of cloud 
computing was created by Pawar et al. [17]. Their strategy emphasizes ensuring safe data 
sharing and privacy preservation by using methods like hashing, 3DES, interpolation, and 
XOR. In contrast, the research suggested in this study offers an integrated approach for cloud 
data security that integrates Opacus encryption, CogniGate Protocol, index trees, and 
blockchain key management. It focuses on encryption that protects user privacy, granular 
access control, adequate data storage, and reliable key management employing blockchain 
technology. The proposed work also investigates differential privacy to improve protection 
without sacrificing performance, tackling significant issues, and utilizing upcoming 
technology. Kuldeep et al. [18] suggested a multi-class privacy-preserving cloud computing 
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approach that uses confidentiality for data encryption and compressed detection for compact 
sensor data encoding. The plan proposes three iterations of the MPCC (Multi-Class Privacy-
Preserving Cloud) architecture that are specially made for decrypting smart meter data 
statistically, deanonymizing image data, and decrypting electrocardiogram (ECG) signals. The 
MPCC concept addresses a number of significant problems with cloud computing, including 
those relating to massive IoT sensor data transfer, energy use, storage, and privacy issues with 
IoT data. The approach taken by Kuldeep et al. primarily emphasizes compressive sensing and 
secrecy techniques for specific applications, in contrast to the proposed work in this paper, 
which concentrates on a comprehensive strategy for cloud data security using Opacus 
encryption, CogniGate Protocol, index trees, and blockchain key management. Although both 
approaches strive to increase cloud computing privacy, there are differences in the precise 
methodologies used in the intended applications, especially the degrees of anonymity attained. 

Shanmugapriya et al. [19] approach emphasizes using deep learning networks for common 
pattern mining. It proposes the SSO-PE strategy to protect data privacy as opposed to the work 
that is proposed in this study. They specifically address the computing complexity problem 
frequently present in pattern mining activities. The suggested work offers an integrated 
strategy integrating Opacus encryption, CogniGate Protocol, index trees, and blockchain key 
management. It focuses on encryption that protects user privacy, granular access control, 
adequate data storage, and efficient handling of keys leveraging blockchain technology. While 
both strategies strive to improve data privacy and security, they differ in the methodologies 
and the particular issues they intend to solve. A secure multi-authority access management 
method was presented by Gupta et al. [20]. Their method accommodates users across public 
and private domains despite protecting policy privacy by simply disclosing the names of policy 
characteristics while maintaining hidden values. In contrast to the work suggested in this 
research, Gupta et al.'s approach focuses on tackling access control issues in the healthcare 
industry, especially for online sharing of data scenarios. Their system prioritizes privacy by 
concealing sensitive attribute values and enabling fine-grained access restriction. Additionally, 
it supports the multi-authority environment, essential for controlling access in complicated 
healthcare situations. 

Xiong et al. proposed a concealing gain access strategy property-based anonymized 
attribute-based broadcasting authentication method [21]. Their system enables a data owner to 
distribute data to several users who comply with their access regulation and constitute a 
component of a predetermined receiver set. The authors provided an actual random oracle-free 
anonymized attribute-based transmission method of encryption and thorough security proof. 
An innovative Internet of Things (IoT) system for healthcare was unveiled by Xu et al. [22], 
which brings together the benefits of attribute-based encryption, computing in the cloud, and 
edge computing. In medical IoT networks, their technology delivers an effective, adaptable, 
and secure fine-grained authentication approach combined with validation of data capabilities. 
Amiri et al. [23] unveiled an intelligent parking system that protects privacy by utilizing 
blockchain technology and retrieving personal data. In order to guarantee security, 
transparency, and the accessibility of parking offers, their strategy is the creation of a collective 
blockchain owned by several parking lot owners. The authors use a private data retrieval 
method that enables drivers to discreetly retrieve parking offers via nodes on the blockchain 
to secure drivers' physical privacy. Additionally, a brief randomizable signature is used, 
enabling drivers to covertly recognize themselves when booking open parking spaces from 
parking owners. A unique Multi-Source Order-Preserving Sync Encryption method was 
developed by Yao et al. [24], which allows the cloud to combine secret information queries 
across several data providers without knowing the contents of the indexes. Without being 
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aware of the scope of the inquiry, the cloud analyzes the protected information across each of 
the pertinent suppliers, enabling quick and discreet query management. The authors also 
suggested an improved system that facilitates data queries more successfully by using an 
organizational framework amongst data suppliers.  

A secure authorization and data-sharing mechanism for active user groups was proposed 
by Yang et al. [25]. Three essential components make up their strategy. To ensure that only 
people with permission to access a given data set may do so, they first design and implement 
access controls based on data properties. They also make it possible for the key generation 
centre to administer access control flexibly and dynamically by efficiently updating account 
information for dynamic user groups. The authors created an effective ciphertext delegation-
based attribute-based encryption (ABE) technique to accomplish these goals. Zhang et al. [26] 
method focuses on merging blockchain technology with public key accessible encryption to 
accomplish data security and safe data sharing, in contrast to the technique suggested in this 
paper. To develop a control mechanism and guarantee impartiality in data transactions, they 
highlight the usage of digital contracts. To improve the accessibility and safety of safeguarding 
priceless and susceptible information, Zhang et al. [27] presented the CP-ABE encryption 
method. The authors developed a privacy-preserving CP-ABE system with reliable authority 
authentication to protect confidential and essential facts. Notably, their technique maintains a 
consistent size for the secret keys. Zhang et al.'s approach, in contrast to the work indicated in 
this research, emphasizes using CP-ABE to safeguard sensitive and essential information 
while upholding user privacy. 

The proposed approach in this paper takes a comprehensive and integrated approach to 
cloud data security. It combines techniques such as Opacus encryption, CogniGate Protocol, 
index trees, and blockchain key management to address various aspects of data privacy, access 
control, data sharing, and secure key management. While the existing works address specific 
challenges such as authentication, multi-class privacy preservation, healthcare data sharing, 
frequent pattern mining, smart parking, and attribute-based encryption, the proposed approach 
provides a broader solution that encompasses these concerns and offers a more comprehensive 
framework for ensuring cloud data security, privacy preservation, fine-grained access control, 
efficient data storage, and secure key management. It leverages emerging technologies and 
explores additional aspects like differential privacy and scalable encryption schemes. 

3. Processing Model 
In this modern era of data security and privacy, it is crucial to integrate various techniques to 
ensure maximum protection of sensitive information. One such integration combines the 
Opacus Encryption Scheme, blockchain-based key management systems, Index Trees, and 
CogniGate Protocol, as seen in Fig. 1. The Opacus Encryption Scheme provides an efficient 
method for securing sensitive data using homomorphic encryption. This scheme also provides 
a way to scale the system to handle large amounts of data while maintaining the confidentiality 
of the data. Blockchain-based key management systems provide a secure and decentralized 
method for storing and managing cryptographic keys used for crypto process. This eliminates 
the need for a centralized key management system and offers higher security and accessibility 
to authorized parties. The blockchain ensures the authenticity and integrity of the keys and 
provides an immutable record of all key transactions. Index Trees provide a fast and efficient 
way to search for and retrieve data from large datasets. They allow quick data retrieval based 
on specific criteria, such as keywords or metadata. This is useful for managing and searching 
large amounts of encrypted data, which can be difficult and time-consuming. 
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Fig. 1. System Design of the proposed Model 

 
CogniGate Protocol provides an additional layer of security by ensuring that sensitive 

information is only accessible to authorized individuals. This is achieved by monitoring and 
analyzing various contextual factors, such as location, time, device, and user behaviour, to 
determine each user's access level. This guarantees that only authorized parties can access the 
data, preventing unlawful access. Integrating these techniques allows for a robust and secure 
system for managing and processing sensitive data. The Opacus Encryption Scheme provides 
confidentiality and integrity for the data, while the blockchain-based key management system 
ensures secure storage and management of cryptographic keys. Index Trees provide fast and 
efficient retrieval of data. 

The flow of data in this system is as follows: The Opacus Encryption Scheme encrypts the 
data before storing it in the cloud-based storage environment. The encrypted data in the system 
is stored primarily within the Index Tree Data Structure. The Index Tree Data Structure serves 
as the storage mechanism for the encrypted data. It is an efficient data structure for quick and 
efficient retrieval, especially for large datasets. This Index Tree Data Structure can be hosted 
within a cloud-based storage environment. On the other hand, the blockchain is used primarily 
for managing cryptographic keys necessary for encryption and decryption. It ensures secure 
and decentralized management of these keys but does not store the actual encrypted data. 
Finally, the CogniGate Protocol determines the user's access level based on contextual factors. 
It provides the authorization token, and the data is decrypted and provided to the authorized 
user. The benefits of this integrated system are significant. It offers a secure and effective 
method of managing and processing sensitive data while ensuring confidentiality, integrity, 
and access control [28]. Our Scheme ensures that the data remains confidential and secure. In 
contrast, the blockchain-based key management system provides that the cryptographic keys 
used for encryption and decryption are safe and accessible only to authorized parties.  
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User authentication is a critical component of any system that deals with sensitive data [5]. 
The system model for user authentication involves several entities that work together to ensure 
secure access to the data. The workflow begins with the user authentication process, where the 
user provides their credentials to the system. The system then verifies the user's identity and 
allows access to the system if the authentication is successful. Once the user is authenticated, 
they can request to access the data. The request can be made through a web interface or API. 
The access request is then passed on to the CogniGate Protocol component, which assesses 
whether the user possesses the necessary characteristics to access the data. The access control 
decision is made based on the user's attributes, such as their security clearance level, job role, 
or any other relevant feature. The access control decision is then communicated back to the 
user. The user can access the encrypted data if the control system's judgment is favourable. 
The encrypted data is stored in a permitted operation on encrypted data without exposing the 
underlying plaintext. The data is retrieved from the Index Tree Data Structure by providing 
the authorization token and decrypted using the Opacus Encryption Algorithm whenever an 
individual asks for access to the encrypted data.  

3.1 User authentication 
The system model for user authentication is an essential component of any system that 

deals with sensitive data. It involves several entities working together to ensure secure access 
to the data. The workflow starts with user authentication and proceeds to access request, 
CogniGate Protocol, access control decision, index tree data structure, Opacus encryption 
scheme, decryption, and blockchain-based key management system. This system model 
provides a high level of security and ensures that the encryption keys are not compromised. 
The proposed system can be used in a various application, including healthcare, finance, and 
government sectors, where data security is critical. 

The proposed work links blockchain key management with Multi-factor Authentication 
(MFA). The encryption key generated by the blockchain key management system is one of the 
authentication factors. For example, the user can provide their username and password as the 
first factor during the authentication process. The second factor can be the encryption key 
generated by the blockchain key management system. Finally, the user must prove their 
ownership of the encryption key by presenting it during authentication. This can be done by 
manually entering the key or using a cryptographic device, such as a smart card or USB token. 
Using blockchain-based key management combined with MFA, the system can provide 
eminent security and prevent unofficial access to encrypted data [7]. Even if the username and 
password are compromised, an attacker still needs access to the encryption key to decrypt the 
data, which would require the second authentication factor. Combining blockchain key 
management with MFA can provide an additional layer of security to user authentication and 
data protection in cloud-based systems. 

3.2 Opacus Encryption Scheme 
The Opacus Encryption Scheme (OES)has two main components: secret and public keys. The 
secret key comprises the two substantial prime numbers (p, q) used to create N. The public 
key is made up of two integers (N, Q), where N is the result of multiplying two large prime 
numbers, and Q is the power of a small prime number. To encrypt a message m, the OES first 
converts it into a polynomial 𝑓𝑓(𝑥𝑥) with coefficients in the ring

𝑍𝑍𝑄𝑄[𝑥𝑥]

𝑥𝑥𝑁𝑁+ 1
. This polynomial is then 

encrypted using the public key to produce a ciphertext c. The encryption process involves 
selecting a random polynomial 𝑔𝑔(𝑥𝑥) with coefficients in the same ring as 𝑓𝑓(𝑥𝑥) and computing 
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𝑐𝑐 =  𝑔𝑔(𝑥𝑥) ∗ 𝑝𝑝(𝑥𝑥) +  2𝑓𝑓(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄, where p(x) is a polynomial with coefficients in the ring 
𝑍𝑍𝑄𝑄[𝑥𝑥]

𝑥𝑥𝑁𝑁+ 1
 that is generated from the secret key. Homomorphic operations can be performed on 

ciphertexts by performing the corresponding operations on the underlying polynomials. For 
example, if c1 and c2 are ciphertexts that encrypt polynomials 𝑓𝑓1(𝑥𝑥) and𝑓𝑓2(𝑥𝑥), respectively, 
then 𝑐𝑐1 ∗ 𝑐𝑐2  is a ciphertext that encrypts the product of 𝑓𝑓1(𝑥𝑥)  and𝑓𝑓2(𝑥𝑥) .To decrypt a 
ciphertext c, the OES scheme first computes𝑐𝑐′ =  𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝(𝑥𝑥), which yields a polynomial 
with coefficients in the ring

𝑍𝑍𝑄𝑄[𝑥𝑥]

𝑥𝑥𝑁𝑁+ 1
. This polynomial can be converted back into a message by 

computing the inverse of the polynomial f(x) that was used to encrypt it. 

3.2.1 OES for differential privacy requires a multi-step process, as follows: 
First, the data is encrypted using the Homomorphic scheme. Each input value is converted 

into a polynomial with coefficients in the ring 
𝑍𝑍𝑄𝑄[𝑥𝑥]

𝑥𝑥𝑁𝑁+ 1
 and encrypted using the OES public key 

to produce a cipher. Next, the encrypted data is made differentially private using the Opacus 
library. Opacus adds noise to the encrypted data to protect the privacy of individual input 
values. The encrypted and differentially private data can now be used for homomorphic 
operations. The Homomorphic scheme allows for encrypted addition and multiplication 
operations to be performed on the ciphertexts. If we have two ciphertexts, C1 and C2, for 
instance, we can compute the ciphertext 𝑐𝑐3 =  𝑐𝑐1 +  𝑐𝑐2 to acquire the summation of the 
corresponding input in encrypted form. Finally, the result of the homomorphic operation is 
decrypted using the OES secret key. The resulting polynomial is then mapped back to the 
original input space to obtain the final result. 

3.2.2 The mathematical model for OES can be represented as follows: 
Input: data𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛; OES public key (N, Q); Opacus differential privacy parameters 
Output: Result of the homomorphic operation on the encrypted and differentially private data 
Data Encryption: 
For each input value 𝑥𝑥𝑖𝑖, convert it into a polynomial 𝑓𝑓(𝑥𝑥𝑖𝑖) with coefficients in the ring 

𝑍𝑍𝑄𝑄[𝑥𝑥]

𝑥𝑥𝑁𝑁+ 1
. 

Encrypt each polynomial 𝑓𝑓(𝑥𝑥𝑖𝑖)using the OES public key (N, Q) to obtain the ciphertext 𝑐𝑐𝑖𝑖: 
Generate a random polynomial g(x) with coefficients in the same ring as 𝑓𝑓(𝑥𝑥𝑖𝑖). 
Compute 𝑐𝑐𝑖𝑖 =  𝑔𝑔(𝑥𝑥𝑖𝑖)𝑝𝑝(𝑥𝑥𝑖𝑖) +  2𝑓𝑓(𝑥𝑥𝑖𝑖)𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄, where 𝑝𝑝(𝑥𝑥𝑖𝑖) is a polynomial generated from the 
OES secret key. 
Differential Privacy: 
Apply differential privacy to the encrypted data using the Opacus library to add noise to the 
polynomials 𝑓𝑓(𝑥𝑥𝑖𝑖) for each ciphertext 𝑐𝑐𝑖𝑖. 
Homomorphic Operations: 
Perform the desired homomorphic operation (addition, multiplication) on the ciphertexts 
𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛 to obtain a new ciphertext 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 
Addition: Given ciphertexts 𝑐𝑐1 and 𝑐𝑐2, the sum 𝑐𝑐3 =  𝑐𝑐1 +  𝑐𝑐2 can be computed as follows: 
Compute 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑐𝑐1 + 𝑐𝑐2 =   𝑝𝑝(𝑥𝑥1) ∗  𝑝𝑝(𝑥𝑥2) ∗ �𝑔𝑔𝑔𝑔(𝑥𝑥1) +  𝑔𝑔𝑔𝑔(𝑥𝑥2)� +  2 ∗  �𝑓𝑓𝑓𝑓(𝑥𝑥1) +  𝑓𝑓𝑓𝑓(𝑥𝑥2)�𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄. 
Multiplication: Given ciphertexts 𝑐𝑐1  and 𝑐𝑐2 , the product 𝑐𝑐3 =  𝑐𝑐1 ∗  𝑐𝑐2  can be computed as 
follows: 
Compute 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑐𝑐1 ∗  𝑐𝑐2 =   �𝑝𝑝(𝑥𝑥1) ∗  𝑝𝑝(𝑥𝑥2)� ∗ �𝑔𝑔𝑔𝑔(𝑥𝑥1) ∗  𝑔𝑔𝑔𝑔(𝑥𝑥2)� +  2 ∗  �𝑓𝑓𝑓𝑓(𝑥𝑥1) ∗  𝑓𝑓𝑓𝑓(𝑥𝑥2)�𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄. 
Decryption: 
Decrypt the result ciphertext 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 using the OES secret key to obtain the final result. 
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3.2.3 OES Algorithm: 
Input: Data 𝑥𝑥1, x2, ..., 𝑥𝑥𝑛𝑛;  

OES public key (N, Q); Opacus differential privacy parameters 
Output: Result of the homomorphic operation on the encrypted and differentially private data 
Step 1: Encrypt the data: 

For each data point 𝑥𝑥𝑖𝑖 
Convert input value to polynomial 

 𝑓𝑓𝑖𝑖 = convertToPolynomial(𝑥𝑥𝑖𝑖) 
Step 2: Generate random polynomial and encrypt 
 𝑔𝑔𝑖𝑖 = generateRandomPolynomial() 
   return random polynomial with coefficients in 

𝑍𝑍𝑄𝑄[𝑥𝑥]

𝑥𝑥𝑁𝑁+ 1
 

 𝑝𝑝𝑖𝑖= generatePolynomialFromSecretKey() 
return 𝑝𝑝(𝑥𝑥𝑖𝑖) = (𝑥𝑥 + 1)𝑁𝑁

2
 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞(𝑥𝑥) 

 𝑐𝑐𝑖𝑖 = encrypt(𝑔𝑔𝑖𝑖,𝑓𝑓𝑖𝑖,𝑝𝑝𝑖𝑖 ,𝑄𝑄) using the OES encryption scheme to obtain the ciphertext.  
Step 3: Apply Differential Privacy 
 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = opacusDifferentialPrivacy(𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

This will result in a new set of ciphertexts 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 
Step 4: Perform the desired homomorphic operation on the ciphertexts 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = homomorphicOperation�𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� 
Step 5: Perform the type of operations 
Homomorphic Addition(𝑐𝑐1, 𝑐𝑐2): 
  𝑔𝑔1,𝑓𝑓1,𝑝𝑝1 = decryptCoefficients(𝑐𝑐1,𝑂𝑂𝑂𝑂𝑂𝑂 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘) 
  𝑔𝑔2,𝑓𝑓2,𝑝𝑝2= decryptCoefficients(𝑐𝑐2,𝑂𝑂𝑂𝑂𝑂𝑂 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘) 

Compute the new polynomial coefficients for the sum 
 𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑔𝑔1 + 𝑔𝑔2 

  𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑓𝑓1 +  𝑓𝑓2 
  𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑝𝑝1 ∗  𝑝𝑝2 
    Encrypt the new polynomial coefficients to obtain the result ciphertext 
  𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑄𝑄) 
    return 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
Homomorphic Multiplication(𝑐𝑐1, 𝑐𝑐2): 
     Extract the polynomial coefficients from the ciphertexts 
  𝑔𝑔1,𝑓𝑓1,𝑝𝑝1 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐1,𝑂𝑂𝑂𝑂𝑂𝑂 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘) 
  𝑔𝑔2,𝑓𝑓2,𝑝𝑝2 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐2,𝑂𝑂𝑂𝑂𝑂𝑂 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘) 
  Compute the new polynomial coefficients for the product 
  𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑔𝑔1 ∗  𝑔𝑔2 
  𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑓𝑓1 ∗  𝑓𝑓2 
  𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑝𝑝1 ∗  𝑝𝑝2 
  Encrypt the new polynomial coefficients to obtain the result ciphertext 
  𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑄𝑄) 

return 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
Decrypt the polynomial coefficients from a ciphertext 

decryptCoefficients(𝑐𝑐𝑖𝑖,𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘): 
  𝑔𝑔𝑖𝑖,𝑓𝑓𝑖𝑖 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐𝑖𝑖,𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘) 
  𝑝𝑝𝑖𝑖 =  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔() 

return 𝑔𝑔𝑖𝑖,𝑓𝑓𝑖𝑖,𝑝𝑝𝑖𝑖 
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Step 6: Decrypt the result: 
result = decrypt(𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑂𝑂𝑂𝑂𝑂𝑂 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘) 

3.3 Blockchain-Based Key Management Systems (BKMS) 
The first step in integrating a blockchain-based key management system with OES is to 
generate the necessary encryption keys. OES requires a key for encryption and decryption of 
data. Using a blockchain-based key management system, these keys can be generated securely 
and reliably. Blockchain technology can ensure the keys are tamper-proof and resistant to 
attacks, thus providing an additional layer of security [29]. Once the keys have been generated, 
they need to be securely distributed to authorized parties. The BKMS can be used to distribute 
these keys. The keys can be encrypted and stored on the blockchain; only authorized parties 
can access them using their private keys. This ensures that the keys are only accessible to those 
who have been granted permission to access them. The key distribution process is efficient 
and secure, ensuring only authorized parties can access the keys. If a key needs to be revoked, 
for example, if a user leaves the system, it can be removed from the blockchain and replaced 
with a new one. This is a crucial step in maintaining the security of the system. The blockchain-
based key management system can ensure that revoked keys are removed from the system, 
thus preventing unauthorized access to the data. The Opacus differential privacy algorithm and 
homomorphic operations can be done on the encrypted data using the OES encryption scheme 
and the keys stored in the blockchain-based key management system. Differential privacy and 
homomorphic operations allow data to be analyzed without revealing sensitive information. 
The OES allows for such privacy-enhancing computations, and the blockchain-based key 
management system provides the necessary keys to perform them. The combination of these 
technologies ensures that data is processed securely and without compromising privacy. 
Key Distribution: In a BKMS, keys can be distributed by encrypting and storing them on the 
blockchain. In a BKMS, the key distribution process involves securely distributing the 
encryption keys engendered by the key generation process to authorized parties.  

Let K be the set of encryption keys generated by the key generation process. For each 
authorized party i, a key pair is generated, where 𝑃𝑃𝑃𝑃𝑏𝑏𝑖𝑖 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑣𝑣𝑖𝑖 are the public and private 
keys, respectively. E (K, SK) is the result of encrypting each key k in K using a symmetric-
key cryptography algorithm. The public keys for every permitted participant are used to 
encrypt the secret key SK as well, resulting in 𝐸𝐸(𝑆𝑆𝑆𝑆,𝑃𝑃𝑃𝑃𝑏𝑏𝑖𝑖). The encrypted keys and their 
corresponding encrypted secret keys, along with the information about the authorized parties 
and their public keys, are then stored on the blockchain. When an authorized party pi wants to 
access the encryption keys, they retrieve the encrypted keys and their corresponding encrypted 
secret keys from the blockchain. They use their private key 𝑃𝑃𝑃𝑃𝑃𝑃𝑣𝑣𝑖𝑖to then decrypt the encrypted 
secret key, and use the decrypted secret key to decrypt the encryption keys. 
Here's how the key distribution process can work: 
1. Encryption of keys: The encryption keys generated by the key generation process are first 
encrypted before being stored on the blockchain. This will guarantee that only individuals with 
permission to access the private keys can decode them and access the keys. 
2. Creation of public-private key pair: Each authorized party is required to have their own 
public-private key pair. This can be generated using an OES algorithm. 
3. Encryption of the keys using the public key: The keys are then encrypted again with each 
authorized party's public key. The encryption ensures that those with the proper private key 
and authorization can only access the keys. 
4. Storing the encrypted keys on the blockchain: In a safe and decentralized manner, the 
encrypted keys are kept on the blockchain with data on the authorized parties and their public 
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keys. 
The following formula can be used for encrypting a key using a recipient's public key: 
Ciphertext: 𝐶𝐶 =  𝐸𝐸�𝑝𝑝𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝐾𝐾� 
where K is the private key to be distributed, E is a homomorphic encryption function and 
𝑝𝑝𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the recipient's public key. 
Key Revocation: In a BKMS, the process of key revocation involves removing access to 
encryption keys from a specific authorized party. To revoke a key in a BKMS, it can be 
removed from the blockchain and replaced with a new one. Here's how the key revocation 
process can work: 
1. Identification of the key to be revoked: The owner of the key management system identifies 
the encryption key that needs to be revoked. 
2. Removal of encrypted key: The encrypted key corresponding to the authorized party whose 
access needs to be revoked is removed from the blockchain. This ensures that the encrypted 
key is no longer accessible to the authorized party. 
3. Generation of new key: A new encryption key is generated to replace the revoked key. This 
ensures that the security of the system is not compromised. 
4. Distribution of new key: The new encryption key is securely distributed to the authorized 
parties who require access to the key. 

Let K be the set of encryption keys generated by the key generation process. Let 
𝐸𝐸(𝐾𝐾, 𝑆𝑆𝐾𝐾𝑖𝑖) be the encrypted key corresponding to the authorized party pi, where 𝑆𝑆𝐾𝐾𝑖𝑖 is the 
encrypted secret key corresponding to the authorized party pi. When the key corresponding to 
authorized party pi needs to be revoked, the owner of the key management system removes 
𝐸𝐸(𝐾𝐾, 𝑆𝑆𝐾𝐾𝑖𝑖)  from the blockchain. A new encryption key 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛  is generated using the key 
generation process, and is encrypted with a new secret 𝑘𝑘𝑘𝑘𝑘𝑘 𝑆𝑆𝐾𝐾𝑛𝑛𝑛𝑛𝑛𝑛. The encrypted new key 
𝐸𝐸(𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛,𝑆𝑆𝐾𝐾𝑛𝑛𝑛𝑛𝑛𝑛) is then distributed to the authorized parties who require access to the key. 
The revoked authorized party i no longer has access to the encryption key, and the new 
authorized parties can access the new encryption key using their own private keys to decrypt 
the encrypted key. 
The following formula to produce a new key: 
New Key: 𝐾𝐾′ =  𝐺𝐺(𝑠𝑠𝑠𝑠) 
where G is a key generation function and sk is the new secret key. 
Differential Privacy: To safeguard the anonymity of private records, varying confidentiality 
entails introducing noise to data. The following formula can be used to add Laplace noise to a 
dataset: 
Noisy Data: 𝐷𝐷′ =  𝐷𝐷 +  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝛥𝛥𝛥𝛥

𝜀𝜀
� 

where D is the original dataset, D' is the noisy dataset, Δf is the sensitivity of the function 
being computed on the dataset, ε is the privacy budget, and Laplace is a Laplace noise 
generation function. 
Algorithm for Integrating a Blockchain-Based Key Management System with OES 
Key Generation 

1. Generate a public key (pk) and a secret key (sk) using the OES algorithm. 
2. Store the public and secret keys in a blockchain-based key management system. 

Key Distribution 
1. Encrypt the public key (pk) using the recipient's public key and store it on the  

blockchain. 
2. Authorized parties can access the encrypted public key using their private keys. 

Key Revocation 
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1. If a key needs to be revoked, remove it from the blockchain-based key management 
system. 

Differential Privacy and Homomorphic Operations 
1. Encrypt the input data values using the OES public key (pk). 
2. Apply the Opacus differential privacy algorithm to the encrypted data values to add  

noise to the polynomial coefficients. 
3. Perform the desired homomorphic operation on the differentially private ciphertexts 

using the OES public key (pk). 
4. Decrypt the result ciphertext using the OES secret key (sk). 
5. Convert the resulting polynomial back into the original data value. 
The first step is to generate a public key (pk) and a secret key (sk) using the OES algorithm. 

The public key is used to encrypt data, and the secret key is used to decrypt data. Once the 
keys have been generated, they need to be distributed to the authorized parties. This can be 
done by encrypting the public key (pk) using the recipient's public key and storing it on the 
blockchain. Authorized parties can then access the encrypted public key using their private 
keys. If a key needs to be revoked, it can be removed from the blockchain-based key 
management system. This will prevent unauthorized parties from accessing the key. To 
perform homomorphic operations on encrypted and differentially private data, the input data 
values are encrypted using the OES public key (pk). The Opacus differential privacy algorithm 
is applied to the encrypted data values to add noise to the polynomial coefficients. This protects 
the privacy of the individuals in the dataset. The desired homomorphic operation is performed 
on the differentially private ciphertexts using the OES public key (pk). The result ciphertext is 
decrypted using the OES secret key (sk). The resulting polynomial is converted back into the 
original data value. Proposed algorithm allows for the secure and efficient processing of 
sensitive data without compromising the privacy of the individuals in the dataset. 

3.4 Blockchain Integration with OES 
The blockchain serves as a secure and decentralized repository for storing and managing 
cryptographic keys used by the Opacus Encryption Scheme (OES). It ensures that the keys are 
tamper-resistant and accessible only to authorized users. The addition of cryptographic keys 
to the blockchain involves creating and broadcasting transactions. Specifically: 
Key Generation and Storage: After generating the public key (pk) and secret key (sk) using 
the OES algorithm, these keys are stored in a transaction. 
Key Distribution: When distributing a public key (pk), it is encrypted with the recipient's 
public key and then stored as a transaction on the blockchain. 
Key Revocation: To revoke a key, a transaction is created to remove it from the blockchain-
based key management system. 

In our proposed integration of blockchain with the Opacus Encryption Scheme (OES), 
we have opted for the widely recognized and well-established Proof of Stake (PoS) consensus 
algorithm. This choice aligns with our objectives of ensuring robust security for cryptographic 
keys, scalability to accommodate system growth, the potential for customization, optimized 
performance, and close alignment with OES's core security goals. PoS provides an effective 
means of managing key transactions securely while supporting the broader objectives of our 
integration. Authorized parties can retrieve encrypted keys from the blockchain by using their 
tokens to decrypt the stored transactions from cloud-based storage environment [30]. This 
retrieval process ensures that only those with the appropriate private keys can access the keys 
stored on the blockchain. 
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3.5 Index Tree Data Structure 
Index trees can be used with the blockchain-based key management system and OES algorithm 
to provide a more efficient and scalable data retrieval and manipulation solution, as seen in 
Fig. 2.  

 
Fig. 2. Role of Index Tree Data Structure 

 
The encrypted data can be arranged and stored in a hierarchical structure using Merkle 

trees. The internal nodes of the tree contain the hashes of their child nodes, and every leaf node 
within the tree correlates to a particular block of encrypted data. Users can traverse the index 
tree to locate the appropriate encrypted data block when they need to retrieve or manipulate a 
specific piece of data. The user can then decrypt the ciphertext using the OES secret key and 
apply the necessary operations on the plaintext data. Before being put back into the appropriate 
block in the index tree, the decrypted ciphertext can be re-encrypted using the OEC public key 
along with the Opacus differential privacy algorithm. Using index trees in this manner can 
significantly reduce the amount of data that needs to be retrieved and decrypted for each 
operation, as only the relevant block needs to be accessed. Additionally, the use of index trees 
can improve the scalability of the system by allowing for efficient storage and retrieval of large 
volumes of data. 

4. Performance Evaluation 
To assess the practical viability and effectiveness of our proposed integrated approach to cloud 
data security, we conducted a comprehensive performance evaluation. This evaluation focused 
on measuring the efficiency and effectiveness of the individual components and their 
combined impact on the overall system performance. The assessment was conducted using a 
real-world dataset, ensuring the relevance and applicability of our findings to real-world cloud 
environments. We carefully considered the performance aspects of each component in our 
integrated approach, namely Opacus encryption, CogniGate Protocol, index trees, and 
blockchain key management. The evaluation aimed to determine the computational efficiency, 
access control overhead, storage efficiency, query performance, and the impact of the 
blockchain-based key management system on the overall system performance.  

The performance evaluation results provide valuable insights into the practicality and 
scalability of our proposed approach. These findings demonstrate the feasibility of our 
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integrated approach in real-world cloud scenarios, validating its ability to safeguard cloud data 
while maintaining high levels of performance, usability, and privacy preservation. The 
performance evaluation further strengthens the contribution of our research, providing 
empirical evidence to support the adoption of our proposed approach for ensuring cloud data 
security. 

4.1 Working Setup 
The proposed integrated approach to cloud data security combines several components and 
techniques to ensure privacy and security. At its core, the system leverages Opacus encryption, 
a homomorphic encryption scheme that enables computation on encrypted data. The above 
process allows for secure data processing and analysis without decryption, preserving cloud 
data privacy. The system also incorporates CogniGate Protocol, which enables fine-grained 
access policies based on user attributes. This context-driven approach provides greater 
flexibility and control over access to cloud data, reducing the risk of unauthorized access [31]. 
To efficiently store and retrieve encrypted data, the system utilizes index trees as a data 
structure. Index trees enable quick and optimized search operations, facilitating efficient data 
retrieval while maintaining data integrity. Additionally, the system employs blockchain key 
management for secure and decentralized storage of encryption keys. Smart contracts and 
consensus mechanisms ensure the integrity and availability of encryption keys, reducing the 
risk of key compromise and unauthorized data access.  

4.2 Encryption time for the data owner  
Based on the number of attributes in the system, compare the encryption time cost for the data 
possessor in the suggested strategy. The number of attributes can be used to model the 
encryption time cost. Let's use the notation "n" for the system's attribute count and "T(n)" for 
the proposed approach's encryption time cost. The following is an expression for the 
relationship between the number of attributes and the cost of the encryption time: 
𝑇𝑇(𝑛𝑛) =  𝑎𝑎 ∗ 𝑛𝑛 +  𝑏𝑏, 
where "a" and "b" are coefficients that represent the specific characteristics and performance 
of the proposed approach. The coefficient "a" represents the time required to encrypt each 
attribute, indicating the encryption time cost per attribute.  
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Fig. 3. Comparison of the encryption cost for the data owner 
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The encryption time cost will increase proportionately to "n" as the number of attributes 

rises. This linear relationship implies that encrypting additional attributes will result in a linear 
increase in the encryption time. The coefficient "b" represents any fixed overhead or constant 
time required for encryption, regardless of the number of attributes [9]. It accounts for any 
initialization or setup time that might be involved in the encryption process but does not 
depend on the number of attributes. By plugging different values for "n" into the formula 
𝑇𝑇(𝑛𝑛) =  𝑎𝑎 ∗ 𝑛𝑛 +  𝑏𝑏, we can calculate the encryption time cost for Approach A at various 
numbers of attributes. This allows us to compare the encryption time cost for the proposed 
approach against other existing approaches. It's important to note that the formula's specific 
values of "a" and "b" will depend on the implementation details, encryption algorithm, 
hardware infrastructure, and other factors related to the proposed approach. These coefficients 
need to be determined through performance testing and benchmarking experiments specific to 
the proposed approach. Fig. 3 showcases the encryption cost for the data owner across various 
approaches, with the number of attributes in the system as the x-axis and the time in 
milliseconds (ms) as the y-axis. In this figure, the encryption cost for the data owner is 
measured in milliseconds (ms) for different numbers of attributes in the system. The proposed 
approach is compared against three existing approaches (Attribute-Based PPDS [21], MOPSE 
[24], and P-ABE [27]). By comparing the values across the approaches, we can gain insights 
into the relative encryption time costs associated with different numbers of attributes. For 
example, at 10 attributes, the proposed approach has an encryption time cost of 16 ms, while 
Attribute-Based PPDS [21], MOPSE [24], and P-ABE [27] have costs of 22 ms, 18 ms, and 
21 ms, respectively. By comparing the two methods, it is possible to assess how well the 
suggested strategy performs in terms of the cost of the encryption process for various attribute 
sizes. 

 

4.3 Decryption cost for data sharer 
To compare the decryption cost for the data sharer in detail and calculate it using a 
mathematical formula, let's denote the number of attributes in the system as "n" and the 
decryption time cost for each approach as follows: 
Attribute-Based PPDS [21]:𝑇𝑇𝐴𝐴(𝑛𝑛)MOPSE [24]: 𝑇𝑇𝐵𝐵(𝑛𝑛)P-ABE [27]: 𝑇𝑇𝐶𝐶(𝑛𝑛) Proposed Approach: 
𝑇𝑇𝑃𝑃(𝑛𝑛). We can express the decryption time cost for each approach as a function of the number 
of attributes. 
Let's consider a generic formula for the decryption time cost: 
𝑇𝑇(𝑛𝑛) =  𝑎𝑎 ∗ 𝑛𝑛𝑏𝑏 +  𝑐𝑐, 
where "a," "b," and "c" are coefficients that represent the specific characteristics and 
performance of each approach. The coefficient "a" represents the time required to decrypt each 
attribute, indicating the decryption time cost per attribute. It captures the complexity of the 
decryption algorithm used in the approach. The coefficient "b" represents the scaling factor 
that determines how the decryption time cost scales with the number of attributes.  
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Fig. 4. Comparison of the decryption cost for data sharer 

 
The coefficient "c" represents any fixed overhead or constant time required for decryption 

that does not depend on the number of attributes. By plugging different values for "n" into the 
formula T(n), we can calculate the decryption time cost for each approach at various numbers 
of attributes. This allows us to compare the decryption time cost of the proposed approach 
against the existing approaches. It's important to note that the specific values of "a," "b," and 
"c" in the formula will depend on the implementation details, decryption algorithms, hardware 
infrastructure, and other factors related to each approach. These coefficients must be 
determined through performance testing and benchmarking experiments specific to each 
approach. Fig. 4 showcases the decryption cost for the data sharer across three existing 
approaches and the proposed approach, with the number of attributes in the system as the x-
axis and the time in milliseconds (ms) as the y-axis. In this figure, we compare the decryption 
time cost for the data sharer across three existing approaches (Attribute-based PPDS [21], 
MOPSE [24], and P-ABE [27]) and the proposed approach. The values in the figure represent 
the decryption time cost in milliseconds for different numbers of attributes in the system. 
Attribute-based PPDS [21], MOPSE [24], and P-ABE [27] are the existing approaches, while 
the Proposed Approach represents the proposed solution in the research. The decryption time 
cost is measured for the data sharer, indicating the time required for the sharer to decrypt the 
encrypted data. As the number of attributes in the system increases from 5 to 25, we can 
observe the decryption time cost for each approach. The values in the figure demonstrate the 
relative decryption time cost for the different approaches at various attribute sizes. 

4.4 Communication overhead comparison of the ciphertext 
Communication overhead refers to the additional data that needs to be transmitted over a 
network or communication channel when encrypting and transmitting ciphertext. Comparing 
the communication overhead of the ciphertext involves evaluating the size of the ciphertext 
for different approaches or scenarios. When comparing the communication overhead of the 
ciphertext, we consider the impact of encryption algorithms, encryption modes, padding 
schemes, and any additional metadata or information transmitted along with the ciphertext. 
These variables and the number of attributes or elements used in the encryption process might 
affect the ciphertext size. The size of the sent data, which is frequently denoted in kilobytes 
(KB) or bytes (B), is the standard unit of measurement for the communication overhead of the 
ciphertext. A smaller ciphertext size generally implies lower communication overhead, 
requiring less network bandwidth and storage space. 
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Fig. 5. Communication overhead comparison of the cipher text 

 
Fig. 5 showcases the communication overhead comparison of the ciphertext for three 

existing approaches and the proposed approach, with the number of attributes in the access 
structure as the x-axis and the communication cost of the ciphertext in kilobytes (KB) as the 
y-axis. In this figure, we compare the communication overhead of the ciphertext for three 
existing approaches (Attribute-Based PPDS [21], MOPSE [24], and P-ABE [27]) and the 
proposed approach. The values in the following figure show the ciphertext's transmission 
expense in kilobytes for various access structures’ attribute counts. The quantity of 
information that must be transferred through the channel of communication is referred to as 
the ciphertext's communication cost. 

As the number of attributes in the access structure increases from 5 to 25, we can observe 
the communication overhead for each approach. The values in the figure demonstrate the 
relative communication cost of the ciphertext for different approaches and attribute sizes. For 
example, at 10 attributes, Attribute-Based PPDS [21] has a communication cost of 84 KB, 
MOPSE [24] has a cost of 74 KB, P-ABE [27] has a cost of 87 KB, and the Proposed Approach 
has a cost of 74 KB. By comparing the two methods, it is possible to assess how well the 
suggested strategy performs in terms of communication overhead for various attribute sizes. 

4.5 Average time cost of index construction (ATCIC) 
The average time required to develop an index structure for a specific data collection is the 
mean cost of index building. It is a crucial performance indicator that measures how effective 
and scalable the indexing process is. Index construction involves creating a data structure that 
enables efficient and fast information retrieval from a large dataset. The process typically 
includes data parsing, preprocessing, feature extraction, and organizing the data into an 
optimized index structure. The average time cost of index construction is influenced by several 
factors, including the dataset's size, the indexing algorithm's complexity, the computational 
resources available, and any additional preprocessing or optimization techniques employed. 
To calculate the average time cost of index construction for different numbers of data files, we 
can use the following formula: 
𝑇𝑇(𝑛𝑛) = (𝛴𝛴𝑡𝑡𝑖𝑖)

𝑛𝑛
, 

where T(n) represents the ATCIC, "𝛴𝛴𝑡𝑡𝑖𝑖" represents the sum of individual index construction 
times for each data file, and "n" represents the overall number of data files. To calculate the 
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average time cost for each approach in the figure, calculate the sum of index construction times 
for a given number of data files and subtract it from the overall number of data files. This 
would yield the ATCIC for that specific number of data files.  
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Fig. 6. Average time cost of index construction 

 
Fig. 6 showcases the ATCIC for three existing approaches and the proposed approach. 

The amount of data files is represented on the x-axis, while the index construction time is 
shown on the y-axis in seconds (s). In this figure, we contrast the mean time required for index 
building for three current methods with the suggested method. The values in the figure 
represent the time needed to construct the index, on average, for other numbers of data files. 
Attribute-based PPDS [21], MOPSE [24], and P-ABE [27] are the existing approaches. The 
index construction time refers to the duration it takes to build an index structure that allows 
for efficient retrieval of information from the data files. We can observe the mean processing 
required for each strategy as data files rise from 100 to 1000. The numbers shown in the figure 
show how efficiently index construction varies depending on the strategy used and how the 
quantity of data files affects building time. For example, with 500 data files, Attribute-Based 
PPDS [21] has an average index construction time of 63.7 seconds, MOPSE [24] takes 52.1 
seconds, P-ABE [27] requires 58.6 seconds, and the Proposed Approach completes the index 
construction in 49.2 seconds. This comparison allows for evaluating the performance of the 
proposed approach against the existing approaches in terms of index construction time for 
varying numbers of data files. 

4.6 Privacy-Performance Trade-offs 
Differential Privacy ensures that sensitive information remains private, even when statistical 
analysis is performed on the data. It provides a rigorous and quantifiable privacy guarantee. 
Fig. 7 represents the Privacy-Performance Trade-offs for the Proposed Approach (with 
Differential Privacy). This figure illustrates the relationship between the privacy parameter (ε) 
and encryption time, a critical performance metric for data owners. As ε decreases, indicating 
stronger privacy protection, there is a corresponding increase in encryption time. Conversely, 
as ε increases, encryption time decreases. This demonstrates the inherent trade-off between 
privacy and performance, allowing users to make informed decisions based on their specific 
requirements.  
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Fig. 7. Privacy-Performance Trade-offs for Proposed Approach 

 
Choosing an appropriate ε value depends on the specific use case and the acceptable trade-

off between privacy and data utility. A lower ε value is suitable for scenarios where strong 
privacy protection is critical, such as healthcare or personal finance applications. In contrast, 
a higher ε value may be acceptable in cases where the emphasis is on data utility, and the risk 
to individual privacy is lower, such as aggregate statistical analysis. Our experiments not only 
showcase the feasibility of our approach but also provide empirical evidence of how privacy 
parameters impact performance. By conducting these experiments, we have demonstrated the 
practical use of Differential Privacy in our scheme and how it allows users to tailor their 
privacy preferences to meet their individual needs while maintaining robust data security. 

5. Conclusion 

This paper proposes an integrated approach to cloud data security that leverages novel Opacus 
encryption, CogniGate Protocol, index trees, and blockchain key management. The proposed 
system is highly effective at protecting cloud data while preserving privacy and maintaining 
high levels of usability and performance. The simulations and tests on an actual data set show 
that our suggested solution works as intended. Additionally, we explored the role of 
differential privacy in the integrated approach, showing how it can be used to further enhance 
privacy protection without compromising performance. We also presented a revolutionary key 
management method based on blockchain to address the key management challenges 
associated with our approach.  

Future work can focus on improving the performance of the proposed system by 
optimizing the Opacus encryption scheme and index trees and exploring the use of other 
homomorphic encryption schemes. Additionally, further research can be done on integrating 
blockchain and innovative contract technologies to enhance the decentralization of the key 
management system. Furthermore, the proposed approach can be extended to support more 
complex access control policies and authentication mechanisms and to address the challenges 
associated with dynamic access control in cloud environments. Finally, the proposed system 
can be evaluated on a larger scale, using more diverse datasets and real-world cloud 
environments to validate its effectiveness and scalability. 
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