
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, Nov. 2023 3182
Copyright ⓒ 2023 KSII

http://doi.org/10.3837/tiis.2023.11.015 ISSN : 1976-7277

Privacy-Preserving Cloud Data Security:
Integrating the Novel Opacus Encryption

and Blockchain Key Management

S. Poorani1*, and R. Anitha1
1Department of Computer Science and Engineering, Sri Venkateswara College of Engineering,

Sriperumbudur, Tamilnadu, 602117, India
[e-mail: spoorani@svce.ac.in, ranitha@svce.ac.in]

*Corresponding author: S. Poorani

Received July 18, 2023; revised September 26, 2023; accepted October 24, 2023;
published November 30, 2023

Abstract

With the growing adoption of cloud-based technologies, maintaining the privacy and
security of cloud data has become a pressing issue. Privacy-preserving encryption schemes are
a promising approach for achieving cloud data security, but they require careful design and
implementation to be effective. The integrated approach to cloud data security that we suggest
in this work uses CogniGate: the orchestrated permissions protocol, index trees, blockchain
key management, and unique Opacus encryption. Opacus encryption is a novel homomorphic
encryption scheme that enables computation on encrypted data, making it a powerful tool for
cloud data security. CogniGate Protocol enables more flexibility and control over access to
cloud data by allowing for fine-grained limitations on access depending on user parameters.
Index trees provide an efficient data structure for storing and retrieving encrypted data, while
blockchain key management ensures the secure and decentralized storage of encryption keys.
Performance evaluation focuses on key aspects, including computation cost for the data owner,
computation cost for data sharers, the average time cost of index construction, query
consumption for data providers, and time cost in key generation. The results highlight that the
integrated approach safeguards cloud data while preserving privacy, maintaining usability, and
demonstrating high performance. In addition, we explore the role of differential privacy in our
integrated approach, showing how it can be used to further enhance privacy protection without
compromising performance. We also discuss the key management challenges associated with
our approach and propose a novel blockchain-based key management system that leverages
smart contracts and consensus mechanisms to ensure the secure and decentralized storage of
encryption keys.

Keywords: Cloud, privacy and security, blockchain, homomorphic encryption, access
control, key management.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3183

1. Introduction

The demand for safe and private cloud data management has expanded due to the quick
development of cloud-based technologies [1]. As a result of the increase in cyber-attacks and
data breaches, protecting the security and confidentiality of cloud data has become a top
priority for both individuals and businesses. Researchers and industry experts have explored
various approaches to achieving privacy-preserving cloud data security to address this
challenge [2-4]. Cloud-based technologies have transformed how organizations and
individuals store, process, and access data. By allowing remote access to computing resources
and data storage, cloud computing has opened up new possibilities for collaboration,
innovation, and scalability [5-7]. However, this convenience and flexibility also have inherent
security and privacy risks. While there are many promising approaches to achieving privacy-
preserving cloud data security, there are also several challenges that must be overcome to
ensure the effectiveness and practicality of these approaches [8].

1.1 Key challenges associated with privacy-preserving cloud data security
Usability and Performance:
One of the main challenges of privacy-preserving cloud data security is balancing the need for
safety with the usability and performance of cloud-based technologies [9]. Encryption and
access control mechanisms sometimes result in increased processing time and decreased
system performance, negatively impacting user experience and adoption. It is essential to
strike a balance between the need for security and the need for usability and performance.
Scalability:
Another challenge of privacy-preserving cloud data security is scalability. As a growing
amount of data is produced and kept on the cloud, there is a need for scalable solutions that
can handle large volumes of data while maintaining privacy and security [10-12]. This requires
efficient data structures and encryption schemes that can be scaled to meet the demands of
cloud-based systems.
Key Management:
Effective key management is critical to privacy-preserving cloud data security. Encryption
keys must be stored securely and managed effectively to guarantee the data's secrecy and
integrity [13-15]. Centralized key management systems can be vulnerable to attacks and data
breaches, so decentralized and blockchain-based key management systems are becoming
increasingly popular.
Interoperability:
Interoperability is a challenge when it comes to privacy-preserving cloud data security. Cloud
systems may use various encryption schemes or access control mechanisms, making
integrating and managing data across different systems difficult. Interoperability standards and
protocols can help to address this challenge, but more work is needed in this area.
Compliance:
Compliance with regulations and industry standards is critical in privacy-preserving cloud data
security. Different industries and jurisdictions may have additional regulations and
requirements for data privacy and security, making it difficult to implement a comprehensive
approach to cloud data security [16]. Interoperability standards and protocols can help address
this challenge, but more work is needed.
Complexity:
Finally, privacy-preserving cloud data security can take time and effort to implement.
Encryption schemes, access control mechanisms, and key management systems all require

3184 Poorani et al.: Privacy-Preserving Cloud Data Security: Integrating
the Novel Opacus Encryption and Blockchain Key Management

careful design and implementation to be effective. The system requires specialized knowledge
and expertise, which may only be available to some organizations. Simplifying and
streamlining the implementation process can help to overcome this challenge.

1.2 Objectives
The proposed method for privacy-preserving cloud data security aims to protect cloud data's
privacy and security while maintaining high levels of performance and usability.

• To enable secure computation on encrypted data while preserving privacy.
• Implement precise access controls depending on user attributes by utilizing CogniGate

Protocol. This gives cloud data access more flexibility and control, guaranteeing those
with permission have access to sensitive data.

• To store and retrieve encrypted data using an effective data structure. To guarantee
that cloud data may be accessed swiftly and effectively without jeopardizing security
or privacy.

Researchers and industry experts have been exploring various approaches to achieving
privacy-preserving cloud data security to address this challenge. Encryption to safeguard
confidential information while in transmission or at rest constitutes a promising strategy. Data
is encoded using encryption, so it cannot be read without a decryption key. Data is made secure
even if it is intercepted or viewed without permission by encrypting it while it is sent online
or kept there. However, traditional encryption methods have limitations regarding cloud data
security. For example, if encrypted data needs to be processed or analyzed in the cloud, it must
first be decrypted, which exposes it to potential security risks. Furthermore, traditional
encryption methods do not provide granular access control, which means that anyone with
access to the decryption key can access all the data.

2. Related Work
Privacy-preserving cloud data security is a field of research that seeks to develop methods and
techniques for ensuring cloud data security. As cloud-based technologies are popular, the need
for effective security measures becomes increasingly important. Cloud computing allows
individuals and organizations to store and process data on remote servers accessed via the
Internet. While cloud computing provides many benefits, such as cost savings, scalability, and
flexibility, it also poses significant data privacy and security risks. Cyberattacks, data breaches,
and unauthorized access are just some of the potential threats that cloud users face. One
approach to addressing these challenges is privacy-preserving encryption. Data is encrypted
using this method before being delivered to the cloud, ensuring that sensitive data remains
private and secure. However, traditional encryption methods have limitations that can
compromise cloud data security.

An authentication along with an information security framework for the use of cloud
computing was created by Pawar et al. [17]. Their strategy emphasizes ensuring safe data
sharing and privacy preservation by using methods like hashing, 3DES, interpolation, and
XOR. In contrast, the research suggested in this study offers an integrated approach for cloud
data security that integrates Opacus encryption, CogniGate Protocol, index trees, and
blockchain key management. It focuses on encryption that protects user privacy, granular
access control, adequate data storage, and reliable key management employing blockchain
technology. The proposed work also investigates differential privacy to improve protection
without sacrificing performance, tackling significant issues, and utilizing upcoming
technology. Kuldeep et al. [18] suggested a multi-class privacy-preserving cloud computing

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3185

approach that uses confidentiality for data encryption and compressed detection for compact
sensor data encoding. The plan proposes three iterations of the MPCC (Multi-Class Privacy-
Preserving Cloud) architecture that are specially made for decrypting smart meter data
statistically, deanonymizing image data, and decrypting electrocardiogram (ECG) signals. The
MPCC concept addresses a number of significant problems with cloud computing, including
those relating to massive IoT sensor data transfer, energy use, storage, and privacy issues with
IoT data. The approach taken by Kuldeep et al. primarily emphasizes compressive sensing and
secrecy techniques for specific applications, in contrast to the proposed work in this paper,
which concentrates on a comprehensive strategy for cloud data security using Opacus
encryption, CogniGate Protocol, index trees, and blockchain key management. Although both
approaches strive to increase cloud computing privacy, there are differences in the precise
methodologies used in the intended applications, especially the degrees of anonymity attained.

Shanmugapriya et al. [19] approach emphasizes using deep learning networks for common
pattern mining. It proposes the SSO-PE strategy to protect data privacy as opposed to the work
that is proposed in this study. They specifically address the computing complexity problem
frequently present in pattern mining activities. The suggested work offers an integrated
strategy integrating Opacus encryption, CogniGate Protocol, index trees, and blockchain key
management. It focuses on encryption that protects user privacy, granular access control,
adequate data storage, and efficient handling of keys leveraging blockchain technology. While
both strategies strive to improve data privacy and security, they differ in the methodologies
and the particular issues they intend to solve. A secure multi-authority access management
method was presented by Gupta et al. [20]. Their method accommodates users across public
and private domains despite protecting policy privacy by simply disclosing the names of policy
characteristics while maintaining hidden values. In contrast to the work suggested in this
research, Gupta et al.'s approach focuses on tackling access control issues in the healthcare
industry, especially for online sharing of data scenarios. Their system prioritizes privacy by
concealing sensitive attribute values and enabling fine-grained access restriction. Additionally,
it supports the multi-authority environment, essential for controlling access in complicated
healthcare situations.

Xiong et al. proposed a concealing gain access strategy property-based anonymized
attribute-based broadcasting authentication method [21]. Their system enables a data owner to
distribute data to several users who comply with their access regulation and constitute a
component of a predetermined receiver set. The authors provided an actual random oracle-free
anonymized attribute-based transmission method of encryption and thorough security proof.
An innovative Internet of Things (IoT) system for healthcare was unveiled by Xu et al. [22],
which brings together the benefits of attribute-based encryption, computing in the cloud, and
edge computing. In medical IoT networks, their technology delivers an effective, adaptable,
and secure fine-grained authentication approach combined with validation of data capabilities.
Amiri et al. [23] unveiled an intelligent parking system that protects privacy by utilizing
blockchain technology and retrieving personal data. In order to guarantee security,
transparency, and the accessibility of parking offers, their strategy is the creation of a collective
blockchain owned by several parking lot owners. The authors use a private data retrieval
method that enables drivers to discreetly retrieve parking offers via nodes on the blockchain
to secure drivers' physical privacy. Additionally, a brief randomizable signature is used,
enabling drivers to covertly recognize themselves when booking open parking spaces from
parking owners. A unique Multi-Source Order-Preserving Sync Encryption method was
developed by Yao et al. [24], which allows the cloud to combine secret information queries
across several data providers without knowing the contents of the indexes. Without being

3186 Poorani et al.: Privacy-Preserving Cloud Data Security: Integrating
the Novel Opacus Encryption and Blockchain Key Management

aware of the scope of the inquiry, the cloud analyzes the protected information across each of
the pertinent suppliers, enabling quick and discreet query management. The authors also
suggested an improved system that facilitates data queries more successfully by using an
organizational framework amongst data suppliers.

A secure authorization and data-sharing mechanism for active user groups was proposed
by Yang et al. [25]. Three essential components make up their strategy. To ensure that only
people with permission to access a given data set may do so, they first design and implement
access controls based on data properties. They also make it possible for the key generation
centre to administer access control flexibly and dynamically by efficiently updating account
information for dynamic user groups. The authors created an effective ciphertext delegation-
based attribute-based encryption (ABE) technique to accomplish these goals. Zhang et al. [26]
method focuses on merging blockchain technology with public key accessible encryption to
accomplish data security and safe data sharing, in contrast to the technique suggested in this
paper. To develop a control mechanism and guarantee impartiality in data transactions, they
highlight the usage of digital contracts. To improve the accessibility and safety of safeguarding
priceless and susceptible information, Zhang et al. [27] presented the CP-ABE encryption
method. The authors developed a privacy-preserving CP-ABE system with reliable authority
authentication to protect confidential and essential facts. Notably, their technique maintains a
consistent size for the secret keys. Zhang et al.'s approach, in contrast to the work indicated in
this research, emphasizes using CP-ABE to safeguard sensitive and essential information
while upholding user privacy.

The proposed approach in this paper takes a comprehensive and integrated approach to
cloud data security. It combines techniques such as Opacus encryption, CogniGate Protocol,
index trees, and blockchain key management to address various aspects of data privacy, access
control, data sharing, and secure key management. While the existing works address specific
challenges such as authentication, multi-class privacy preservation, healthcare data sharing,
frequent pattern mining, smart parking, and attribute-based encryption, the proposed approach
provides a broader solution that encompasses these concerns and offers a more comprehensive
framework for ensuring cloud data security, privacy preservation, fine-grained access control,
efficient data storage, and secure key management. It leverages emerging technologies and
explores additional aspects like differential privacy and scalable encryption schemes.

3. Processing Model
In this modern era of data security and privacy, it is crucial to integrate various techniques to
ensure maximum protection of sensitive information. One such integration combines the
Opacus Encryption Scheme, blockchain-based key management systems, Index Trees, and
CogniGate Protocol, as seen in Fig. 1. The Opacus Encryption Scheme provides an efficient
method for securing sensitive data using homomorphic encryption. This scheme also provides
a way to scale the system to handle large amounts of data while maintaining the confidentiality
of the data. Blockchain-based key management systems provide a secure and decentralized
method for storing and managing cryptographic keys used for crypto process. This eliminates
the need for a centralized key management system and offers higher security and accessibility
to authorized parties. The blockchain ensures the authenticity and integrity of the keys and
provides an immutable record of all key transactions. Index Trees provide a fast and efficient
way to search for and retrieve data from large datasets. They allow quick data retrieval based
on specific criteria, such as keywords or metadata. This is useful for managing and searching
large amounts of encrypted data, which can be difficult and time-consuming.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3187

Fig. 1. System Design of the proposed Model

CogniGate Protocol provides an additional layer of security by ensuring that sensitive

information is only accessible to authorized individuals. This is achieved by monitoring and
analyzing various contextual factors, such as location, time, device, and user behaviour, to
determine each user's access level. This guarantees that only authorized parties can access the
data, preventing unlawful access. Integrating these techniques allows for a robust and secure
system for managing and processing sensitive data. The Opacus Encryption Scheme provides
confidentiality and integrity for the data, while the blockchain-based key management system
ensures secure storage and management of cryptographic keys. Index Trees provide fast and
efficient retrieval of data.

The flow of data in this system is as follows: The Opacus Encryption Scheme encrypts the
data before storing it in the cloud-based storage environment. The encrypted data in the system
is stored primarily within the Index Tree Data Structure. The Index Tree Data Structure serves
as the storage mechanism for the encrypted data. It is an efficient data structure for quick and
efficient retrieval, especially for large datasets. This Index Tree Data Structure can be hosted
within a cloud-based storage environment. On the other hand, the blockchain is used primarily
for managing cryptographic keys necessary for encryption and decryption. It ensures secure
and decentralized management of these keys but does not store the actual encrypted data.
Finally, the CogniGate Protocol determines the user's access level based on contextual factors.
It provides the authorization token, and the data is decrypted and provided to the authorized
user. The benefits of this integrated system are significant. It offers a secure and effective
method of managing and processing sensitive data while ensuring confidentiality, integrity,
and access control [28]. Our Scheme ensures that the data remains confidential and secure. In
contrast, the blockchain-based key management system provides that the cryptographic keys
used for encryption and decryption are safe and accessible only to authorized parties.

User

Decrypted using
the Opacus
Encryption

Scheme
13

Blockchain-
Based Key

Management
System

Stores encryption

keys
Ensures security
and transparency

Opacus Encryption
Scheme

 Encrypts data
Enables

computations

Index Tree Data

Structure

Stores
Encrypted data

Encrypted
data

2 3

R
eq

ue
st

to

ac
ce

ss
 d

at
a

A
ut

ho
riz

at
io

n
To

ke
n

 /

D
en

ie
d

ac
ce

ss

5

7

Authenticated
User

Data
Retrieval

Access
Granted

8

User

Authentication

 Verifies the
user's

Identity

User

4 D
ec

ry
pt

io
n

K
ey

A
 T

ok
en

11 12

CogniGate
Protocol

Decision based on

the user's
attributes

Access Granted

A
ut

ho
riz

at
io

n
To

ke
n

9

En
cr

yp
te

d
da

ta

10

6

Encryption
keys

Data
Owner Data

1

3188 Poorani et al.: Privacy-Preserving Cloud Data Security: Integrating
the Novel Opacus Encryption and Blockchain Key Management

User authentication is a critical component of any system that deals with sensitive data [5].
The system model for user authentication involves several entities that work together to ensure
secure access to the data. The workflow begins with the user authentication process, where the
user provides their credentials to the system. The system then verifies the user's identity and
allows access to the system if the authentication is successful. Once the user is authenticated,
they can request to access the data. The request can be made through a web interface or API.
The access request is then passed on to the CogniGate Protocol component, which assesses
whether the user possesses the necessary characteristics to access the data. The access control
decision is made based on the user's attributes, such as their security clearance level, job role,
or any other relevant feature. The access control decision is then communicated back to the
user. The user can access the encrypted data if the control system's judgment is favourable.
The encrypted data is stored in a permitted operation on encrypted data without exposing the
underlying plaintext. The data is retrieved from the Index Tree Data Structure by providing
the authorization token and decrypted using the Opacus Encryption Algorithm whenever an
individual asks for access to the encrypted data.

3.1 User authentication
The system model for user authentication is an essential component of any system that

deals with sensitive data. It involves several entities working together to ensure secure access
to the data. The workflow starts with user authentication and proceeds to access request,
CogniGate Protocol, access control decision, index tree data structure, Opacus encryption
scheme, decryption, and blockchain-based key management system. This system model
provides a high level of security and ensures that the encryption keys are not compromised.
The proposed system can be used in a various application, including healthcare, finance, and
government sectors, where data security is critical.

The proposed work links blockchain key management with Multi-factor Authentication
(MFA). The encryption key generated by the blockchain key management system is one of the
authentication factors. For example, the user can provide their username and password as the
first factor during the authentication process. The second factor can be the encryption key
generated by the blockchain key management system. Finally, the user must prove their
ownership of the encryption key by presenting it during authentication. This can be done by
manually entering the key or using a cryptographic device, such as a smart card or USB token.
Using blockchain-based key management combined with MFA, the system can provide
eminent security and prevent unofficial access to encrypted data [7]. Even if the username and
password are compromised, an attacker still needs access to the encryption key to decrypt the
data, which would require the second authentication factor. Combining blockchain key
management with MFA can provide an additional layer of security to user authentication and
data protection in cloud-based systems.

3.2 Opacus Encryption Scheme
The Opacus Encryption Scheme (OES)has two main components: secret and public keys. The
secret key comprises the two substantial prime numbers (p, q) used to create N. The public
key is made up of two integers (N, Q), where N is the result of multiplying two large prime
numbers, and Q is the power of a small prime number. To encrypt a message m, the OES first
converts it into a polynomial 𝑓𝑓(𝑥𝑥) with coefficients in the ring

𝑍𝑍𝑄𝑄[𝑥𝑥]

𝑥𝑥𝑁𝑁+ 1
. This polynomial is then

encrypted using the public key to produce a ciphertext c. The encryption process involves
selecting a random polynomial 𝑔𝑔(𝑥𝑥) with coefficients in the same ring as 𝑓𝑓(𝑥𝑥) and computing

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3189

𝑐𝑐 = 𝑔𝑔(𝑥𝑥) ∗ 𝑝𝑝(𝑥𝑥) + 2𝑓𝑓(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄, where p(x) is a polynomial with coefficients in the ring
𝑍𝑍𝑄𝑄[𝑥𝑥]

𝑥𝑥𝑁𝑁+ 1
 that is generated from the secret key. Homomorphic operations can be performed on

ciphertexts by performing the corresponding operations on the underlying polynomials. For
example, if c1 and c2 are ciphertexts that encrypt polynomials 𝑓𝑓1(𝑥𝑥) and𝑓𝑓2(𝑥𝑥), respectively,
then 𝑐𝑐1 ∗ 𝑐𝑐2 is a ciphertext that encrypts the product of 𝑓𝑓1(𝑥𝑥) and𝑓𝑓2(𝑥𝑥) .To decrypt a
ciphertext c, the OES scheme first computes𝑐𝑐′ = 𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝(𝑥𝑥), which yields a polynomial
with coefficients in the ring

𝑍𝑍𝑄𝑄[𝑥𝑥]

𝑥𝑥𝑁𝑁+ 1
. This polynomial can be converted back into a message by

computing the inverse of the polynomial f(x) that was used to encrypt it.

3.2.1 OES for differential privacy requires a multi-step process, as follows:
First, the data is encrypted using the Homomorphic scheme. Each input value is converted

into a polynomial with coefficients in the ring
𝑍𝑍𝑄𝑄[𝑥𝑥]

𝑥𝑥𝑁𝑁+ 1
 and encrypted using the OES public key

to produce a cipher. Next, the encrypted data is made differentially private using the Opacus
library. Opacus adds noise to the encrypted data to protect the privacy of individual input
values. The encrypted and differentially private data can now be used for homomorphic
operations. The Homomorphic scheme allows for encrypted addition and multiplication
operations to be performed on the ciphertexts. If we have two ciphertexts, C1 and C2, for
instance, we can compute the ciphertext 𝑐𝑐3 = 𝑐𝑐1 + 𝑐𝑐2 to acquire the summation of the
corresponding input in encrypted form. Finally, the result of the homomorphic operation is
decrypted using the OES secret key. The resulting polynomial is then mapped back to the
original input space to obtain the final result.

3.2.2 The mathematical model for OES can be represented as follows:
Input: data𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛; OES public key (N, Q); Opacus differential privacy parameters
Output: Result of the homomorphic operation on the encrypted and differentially private data
Data Encryption:
For each input value 𝑥𝑥𝑖𝑖, convert it into a polynomial 𝑓𝑓(𝑥𝑥𝑖𝑖) with coefficients in the ring

𝑍𝑍𝑄𝑄[𝑥𝑥]

𝑥𝑥𝑁𝑁+ 1
.

Encrypt each polynomial 𝑓𝑓(𝑥𝑥𝑖𝑖)using the OES public key (N, Q) to obtain the ciphertext 𝑐𝑐𝑖𝑖:
Generate a random polynomial g(x) with coefficients in the same ring as 𝑓𝑓(𝑥𝑥𝑖𝑖).
Compute 𝑐𝑐𝑖𝑖 = 𝑔𝑔(𝑥𝑥𝑖𝑖)𝑝𝑝(𝑥𝑥𝑖𝑖) + 2𝑓𝑓(𝑥𝑥𝑖𝑖)𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄, where 𝑝𝑝(𝑥𝑥𝑖𝑖) is a polynomial generated from the
OES secret key.
Differential Privacy:
Apply differential privacy to the encrypted data using the Opacus library to add noise to the
polynomials 𝑓𝑓(𝑥𝑥𝑖𝑖) for each ciphertext 𝑐𝑐𝑖𝑖.
Homomorphic Operations:
Perform the desired homomorphic operation (addition, multiplication) on the ciphertexts
𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛 to obtain a new ciphertext 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.
Addition: Given ciphertexts 𝑐𝑐1 and 𝑐𝑐2, the sum 𝑐𝑐3 = 𝑐𝑐1 + 𝑐𝑐2 can be computed as follows:
Compute 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑐𝑐1 + 𝑐𝑐2 = 𝑝𝑝(𝑥𝑥1) ∗ 𝑝𝑝(𝑥𝑥2) ∗ �𝑔𝑔𝑔𝑔(𝑥𝑥1) + 𝑔𝑔𝑔𝑔(𝑥𝑥2)� + 2 ∗ �𝑓𝑓𝑓𝑓(𝑥𝑥1) + 𝑓𝑓𝑓𝑓(𝑥𝑥2)�𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄.
Multiplication: Given ciphertexts 𝑐𝑐1 and 𝑐𝑐2 , the product 𝑐𝑐3 = 𝑐𝑐1 ∗ 𝑐𝑐2 can be computed as
follows:
Compute 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑐𝑐1 ∗ 𝑐𝑐2 = �𝑝𝑝(𝑥𝑥1) ∗ 𝑝𝑝(𝑥𝑥2)� ∗ �𝑔𝑔𝑔𝑔(𝑥𝑥1) ∗ 𝑔𝑔𝑔𝑔(𝑥𝑥2)� + 2 ∗ �𝑓𝑓𝑓𝑓(𝑥𝑥1) ∗ 𝑓𝑓𝑓𝑓(𝑥𝑥2)�𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄.
Decryption:
Decrypt the result ciphertext 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 using the OES secret key to obtain the final result.

3190 Poorani et al.: Privacy-Preserving Cloud Data Security: Integrating
the Novel Opacus Encryption and Blockchain Key Management

3.2.3 OES Algorithm:
Input: Data 𝑥𝑥1, x2, ..., 𝑥𝑥𝑛𝑛;

OES public key (N, Q); Opacus differential privacy parameters
Output: Result of the homomorphic operation on the encrypted and differentially private data
Step 1: Encrypt the data:

For each data point 𝑥𝑥𝑖𝑖
Convert input value to polynomial

 𝑓𝑓𝑖𝑖 = convertToPolynomial(𝑥𝑥𝑖𝑖)
Step 2: Generate random polynomial and encrypt
 𝑔𝑔𝑖𝑖 = generateRandomPolynomial()
 return random polynomial with coefficients in

𝑍𝑍𝑄𝑄[𝑥𝑥]

𝑥𝑥𝑁𝑁+ 1

 𝑝𝑝𝑖𝑖= generatePolynomialFromSecretKey()
return 𝑝𝑝(𝑥𝑥𝑖𝑖) = (𝑥𝑥 + 1)𝑁𝑁

2
 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞(𝑥𝑥)

 𝑐𝑐𝑖𝑖 = encrypt(𝑔𝑔𝑖𝑖,𝑓𝑓𝑖𝑖,𝑝𝑝𝑖𝑖 ,𝑄𝑄) using the OES encryption scheme to obtain the ciphertext.
Step 3: Apply Differential Privacy
 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = opacusDifferentialPrivacy(𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

This will result in a new set of ciphertexts 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.
Step 4: Perform the desired homomorphic operation on the ciphertexts 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = homomorphicOperation�𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�
Step 5: Perform the type of operations
Homomorphic Addition(𝑐𝑐1, 𝑐𝑐2):
 𝑔𝑔1,𝑓𝑓1,𝑝𝑝1 = decryptCoefficients(𝑐𝑐1,𝑂𝑂𝑂𝑂𝑂𝑂 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘)
 𝑔𝑔2,𝑓𝑓2,𝑝𝑝2= decryptCoefficients(𝑐𝑐2,𝑂𝑂𝑂𝑂𝑂𝑂 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘)

Compute the new polynomial coefficients for the sum
 𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑔𝑔1 + 𝑔𝑔2

 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓1 + 𝑓𝑓2
 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑝𝑝1 ∗ 𝑝𝑝2
 Encrypt the new polynomial coefficients to obtain the result ciphertext
 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑄𝑄)
 return 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
Homomorphic Multiplication(𝑐𝑐1, 𝑐𝑐2):
 Extract the polynomial coefficients from the ciphertexts
 𝑔𝑔1,𝑓𝑓1,𝑝𝑝1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐1,𝑂𝑂𝑂𝑂𝑂𝑂 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘)
 𝑔𝑔2,𝑓𝑓2,𝑝𝑝2 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐2,𝑂𝑂𝑂𝑂𝑂𝑂 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘)
 Compute the new polynomial coefficients for the product
 𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑔𝑔1 ∗ 𝑔𝑔2
 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓1 ∗ 𝑓𝑓2
 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑝𝑝1 ∗ 𝑝𝑝2
 Encrypt the new polynomial coefficients to obtain the result ciphertext
 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑄𝑄)

return 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
Decrypt the polynomial coefficients from a ciphertext

decryptCoefficients(𝑐𝑐𝑖𝑖,𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘):
 𝑔𝑔𝑖𝑖,𝑓𝑓𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐𝑖𝑖,𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘)
 𝑝𝑝𝑖𝑖 = 𝑔𝑔()

return 𝑔𝑔𝑖𝑖,𝑓𝑓𝑖𝑖,𝑝𝑝𝑖𝑖

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3191

Step 6: Decrypt the result:
result = decrypt(𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑂𝑂𝑂𝑂𝑂𝑂 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘)

3.3 Blockchain-Based Key Management Systems (BKMS)
The first step in integrating a blockchain-based key management system with OES is to
generate the necessary encryption keys. OES requires a key for encryption and decryption of
data. Using a blockchain-based key management system, these keys can be generated securely
and reliably. Blockchain technology can ensure the keys are tamper-proof and resistant to
attacks, thus providing an additional layer of security [29]. Once the keys have been generated,
they need to be securely distributed to authorized parties. The BKMS can be used to distribute
these keys. The keys can be encrypted and stored on the blockchain; only authorized parties
can access them using their private keys. This ensures that the keys are only accessible to those
who have been granted permission to access them. The key distribution process is efficient
and secure, ensuring only authorized parties can access the keys. If a key needs to be revoked,
for example, if a user leaves the system, it can be removed from the blockchain and replaced
with a new one. This is a crucial step in maintaining the security of the system. The blockchain-
based key management system can ensure that revoked keys are removed from the system,
thus preventing unauthorized access to the data. The Opacus differential privacy algorithm and
homomorphic operations can be done on the encrypted data using the OES encryption scheme
and the keys stored in the blockchain-based key management system. Differential privacy and
homomorphic operations allow data to be analyzed without revealing sensitive information.
The OES allows for such privacy-enhancing computations, and the blockchain-based key
management system provides the necessary keys to perform them. The combination of these
technologies ensures that data is processed securely and without compromising privacy.
Key Distribution: In a BKMS, keys can be distributed by encrypting and storing them on the
blockchain. In a BKMS, the key distribution process involves securely distributing the
encryption keys engendered by the key generation process to authorized parties.

Let K be the set of encryption keys generated by the key generation process. For each
authorized party i, a key pair is generated, where 𝑃𝑃𝑃𝑃𝑏𝑏𝑖𝑖 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑣𝑣𝑖𝑖 are the public and private
keys, respectively. E (K, SK) is the result of encrypting each key k in K using a symmetric-
key cryptography algorithm. The public keys for every permitted participant are used to
encrypt the secret key SK as well, resulting in 𝐸𝐸(𝑆𝑆𝑆𝑆,𝑃𝑃𝑃𝑃𝑏𝑏𝑖𝑖). The encrypted keys and their
corresponding encrypted secret keys, along with the information about the authorized parties
and their public keys, are then stored on the blockchain. When an authorized party pi wants to
access the encryption keys, they retrieve the encrypted keys and their corresponding encrypted
secret keys from the blockchain. They use their private key 𝑃𝑃𝑃𝑃𝑃𝑃𝑣𝑣𝑖𝑖to then decrypt the encrypted
secret key, and use the decrypted secret key to decrypt the encryption keys.
Here's how the key distribution process can work:
1. Encryption of keys: The encryption keys generated by the key generation process are first
encrypted before being stored on the blockchain. This will guarantee that only individuals with
permission to access the private keys can decode them and access the keys.
2. Creation of public-private key pair: Each authorized party is required to have their own
public-private key pair. This can be generated using an OES algorithm.
3. Encryption of the keys using the public key: The keys are then encrypted again with each
authorized party's public key. The encryption ensures that those with the proper private key
and authorization can only access the keys.
4. Storing the encrypted keys on the blockchain: In a safe and decentralized manner, the
encrypted keys are kept on the blockchain with data on the authorized parties and their public

3192 Poorani et al.: Privacy-Preserving Cloud Data Security: Integrating
the Novel Opacus Encryption and Blockchain Key Management

keys.
The following formula can be used for encrypting a key using a recipient's public key:
Ciphertext: 𝐶𝐶 = 𝐸𝐸�𝑝𝑝𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝐾𝐾�
where K is the private key to be distributed, E is a homomorphic encryption function and
𝑝𝑝𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the recipient's public key.
Key Revocation: In a BKMS, the process of key revocation involves removing access to
encryption keys from a specific authorized party. To revoke a key in a BKMS, it can be
removed from the blockchain and replaced with a new one. Here's how the key revocation
process can work:
1. Identification of the key to be revoked: The owner of the key management system identifies
the encryption key that needs to be revoked.
2. Removal of encrypted key: The encrypted key corresponding to the authorized party whose
access needs to be revoked is removed from the blockchain. This ensures that the encrypted
key is no longer accessible to the authorized party.
3. Generation of new key: A new encryption key is generated to replace the revoked key. This
ensures that the security of the system is not compromised.
4. Distribution of new key: The new encryption key is securely distributed to the authorized
parties who require access to the key.

Let K be the set of encryption keys generated by the key generation process. Let
𝐸𝐸(𝐾𝐾, 𝑆𝑆𝐾𝐾𝑖𝑖) be the encrypted key corresponding to the authorized party pi, where 𝑆𝑆𝐾𝐾𝑖𝑖 is the
encrypted secret key corresponding to the authorized party pi. When the key corresponding to
authorized party pi needs to be revoked, the owner of the key management system removes
𝐸𝐸(𝐾𝐾, 𝑆𝑆𝐾𝐾𝑖𝑖) from the blockchain. A new encryption key 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 is generated using the key
generation process, and is encrypted with a new secret 𝑘𝑘𝑘𝑘𝑘𝑘 𝑆𝑆𝐾𝐾𝑛𝑛𝑛𝑛𝑛𝑛. The encrypted new key
𝐸𝐸(𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛,𝑆𝑆𝐾𝐾𝑛𝑛𝑛𝑛𝑛𝑛) is then distributed to the authorized parties who require access to the key.
The revoked authorized party i no longer has access to the encryption key, and the new
authorized parties can access the new encryption key using their own private keys to decrypt
the encrypted key.
The following formula to produce a new key:
New Key: 𝐾𝐾′ = 𝐺𝐺(𝑠𝑠𝑠𝑠)
where G is a key generation function and sk is the new secret key.
Differential Privacy: To safeguard the anonymity of private records, varying confidentiality
entails introducing noise to data. The following formula can be used to add Laplace noise to a
dataset:
Noisy Data: 𝐷𝐷′ = 𝐷𝐷 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝛥𝛥𝛥𝛥

𝜀𝜀
�

where D is the original dataset, D' is the noisy dataset, Δf is the sensitivity of the function
being computed on the dataset, ε is the privacy budget, and Laplace is a Laplace noise
generation function.
Algorithm for Integrating a Blockchain-Based Key Management System with OES
Key Generation

1. Generate a public key (pk) and a secret key (sk) using the OES algorithm.
2. Store the public and secret keys in a blockchain-based key management system.

Key Distribution
1. Encrypt the public key (pk) using the recipient's public key and store it on the

blockchain.
2. Authorized parties can access the encrypted public key using their private keys.

Key Revocation

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3193

1. If a key needs to be revoked, remove it from the blockchain-based key management
system.

Differential Privacy and Homomorphic Operations
1. Encrypt the input data values using the OES public key (pk).
2. Apply the Opacus differential privacy algorithm to the encrypted data values to add

noise to the polynomial coefficients.
3. Perform the desired homomorphic operation on the differentially private ciphertexts

using the OES public key (pk).
4. Decrypt the result ciphertext using the OES secret key (sk).
5. Convert the resulting polynomial back into the original data value.
The first step is to generate a public key (pk) and a secret key (sk) using the OES algorithm.

The public key is used to encrypt data, and the secret key is used to decrypt data. Once the
keys have been generated, they need to be distributed to the authorized parties. This can be
done by encrypting the public key (pk) using the recipient's public key and storing it on the
blockchain. Authorized parties can then access the encrypted public key using their private
keys. If a key needs to be revoked, it can be removed from the blockchain-based key
management system. This will prevent unauthorized parties from accessing the key. To
perform homomorphic operations on encrypted and differentially private data, the input data
values are encrypted using the OES public key (pk). The Opacus differential privacy algorithm
is applied to the encrypted data values to add noise to the polynomial coefficients. This protects
the privacy of the individuals in the dataset. The desired homomorphic operation is performed
on the differentially private ciphertexts using the OES public key (pk). The result ciphertext is
decrypted using the OES secret key (sk). The resulting polynomial is converted back into the
original data value. Proposed algorithm allows for the secure and efficient processing of
sensitive data without compromising the privacy of the individuals in the dataset.

3.4 Blockchain Integration with OES
The blockchain serves as a secure and decentralized repository for storing and managing
cryptographic keys used by the Opacus Encryption Scheme (OES). It ensures that the keys are
tamper-resistant and accessible only to authorized users. The addition of cryptographic keys
to the blockchain involves creating and broadcasting transactions. Specifically:
Key Generation and Storage: After generating the public key (pk) and secret key (sk) using
the OES algorithm, these keys are stored in a transaction.
Key Distribution: When distributing a public key (pk), it is encrypted with the recipient's
public key and then stored as a transaction on the blockchain.
Key Revocation: To revoke a key, a transaction is created to remove it from the blockchain-
based key management system.

In our proposed integration of blockchain with the Opacus Encryption Scheme (OES),
we have opted for the widely recognized and well-established Proof of Stake (PoS) consensus
algorithm. This choice aligns with our objectives of ensuring robust security for cryptographic
keys, scalability to accommodate system growth, the potential for customization, optimized
performance, and close alignment with OES's core security goals. PoS provides an effective
means of managing key transactions securely while supporting the broader objectives of our
integration. Authorized parties can retrieve encrypted keys from the blockchain by using their
tokens to decrypt the stored transactions from cloud-based storage environment [30]. This
retrieval process ensures that only those with the appropriate private keys can access the keys
stored on the blockchain.

3194 Poorani et al.: Privacy-Preserving Cloud Data Security: Integrating
the Novel Opacus Encryption and Blockchain Key Management

3.5 Index Tree Data Structure
Index trees can be used with the blockchain-based key management system and OES algorithm
to provide a more efficient and scalable data retrieval and manipulation solution, as seen in
Fig. 2.

Fig. 2. Role of Index Tree Data Structure

The encrypted data can be arranged and stored in a hierarchical structure using Merkle

trees. The internal nodes of the tree contain the hashes of their child nodes, and every leaf node
within the tree correlates to a particular block of encrypted data. Users can traverse the index
tree to locate the appropriate encrypted data block when they need to retrieve or manipulate a
specific piece of data. The user can then decrypt the ciphertext using the OES secret key and
apply the necessary operations on the plaintext data. Before being put back into the appropriate
block in the index tree, the decrypted ciphertext can be re-encrypted using the OEC public key
along with the Opacus differential privacy algorithm. Using index trees in this manner can
significantly reduce the amount of data that needs to be retrieved and decrypted for each
operation, as only the relevant block needs to be accessed. Additionally, the use of index trees
can improve the scalability of the system by allowing for efficient storage and retrieval of large
volumes of data.

4. Performance Evaluation
To assess the practical viability and effectiveness of our proposed integrated approach to cloud
data security, we conducted a comprehensive performance evaluation. This evaluation focused
on measuring the efficiency and effectiveness of the individual components and their
combined impact on the overall system performance. The assessment was conducted using a
real-world dataset, ensuring the relevance and applicability of our findings to real-world cloud
environments. We carefully considered the performance aspects of each component in our
integrated approach, namely Opacus encryption, CogniGate Protocol, index trees, and
blockchain key management. The evaluation aimed to determine the computational efficiency,
access control overhead, storage efficiency, query performance, and the impact of the
blockchain-based key management system on the overall system performance.

The performance evaluation results provide valuable insights into the practicality and
scalability of our proposed approach. These findings demonstrate the feasibility of our

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3195

integrated approach in real-world cloud scenarios, validating its ability to safeguard cloud data
while maintaining high levels of performance, usability, and privacy preservation. The
performance evaluation further strengthens the contribution of our research, providing
empirical evidence to support the adoption of our proposed approach for ensuring cloud data
security.

4.1 Working Setup
The proposed integrated approach to cloud data security combines several components and
techniques to ensure privacy and security. At its core, the system leverages Opacus encryption,
a homomorphic encryption scheme that enables computation on encrypted data. The above
process allows for secure data processing and analysis without decryption, preserving cloud
data privacy. The system also incorporates CogniGate Protocol, which enables fine-grained
access policies based on user attributes. This context-driven approach provides greater
flexibility and control over access to cloud data, reducing the risk of unauthorized access [31].
To efficiently store and retrieve encrypted data, the system utilizes index trees as a data
structure. Index trees enable quick and optimized search operations, facilitating efficient data
retrieval while maintaining data integrity. Additionally, the system employs blockchain key
management for secure and decentralized storage of encryption keys. Smart contracts and
consensus mechanisms ensure the integrity and availability of encryption keys, reducing the
risk of key compromise and unauthorized data access.

4.2 Encryption time for the data owner
Based on the number of attributes in the system, compare the encryption time cost for the data
possessor in the suggested strategy. The number of attributes can be used to model the
encryption time cost. Let's use the notation "n" for the system's attribute count and "T(n)" for
the proposed approach's encryption time cost. The following is an expression for the
relationship between the number of attributes and the cost of the encryption time:
𝑇𝑇(𝑛𝑛) = 𝑎𝑎 ∗ 𝑛𝑛 + 𝑏𝑏,
where "a" and "b" are coefficients that represent the specific characteristics and performance
of the proposed approach. The coefficient "a" represents the time required to encrypt each
attribute, indicating the encryption time cost per attribute.

5 10 15 20 25
10

15

20

25

30

35

40

45

50

Ti
m

e i
n

m
illi

se
co

nd
s (

m
s)

Number of attributes in the system

 Proposed Approach
 CP-ABE [27]
 MOPSE [24]
 Attribute-Based PPDS [21]

Fig. 3. Comparison of the encryption cost for the data owner

3196 Poorani et al.: Privacy-Preserving Cloud Data Security: Integrating
the Novel Opacus Encryption and Blockchain Key Management

The encryption time cost will increase proportionately to "n" as the number of attributes

rises. This linear relationship implies that encrypting additional attributes will result in a linear
increase in the encryption time. The coefficient "b" represents any fixed overhead or constant
time required for encryption, regardless of the number of attributes [9]. It accounts for any
initialization or setup time that might be involved in the encryption process but does not
depend on the number of attributes. By plugging different values for "n" into the formula
𝑇𝑇(𝑛𝑛) = 𝑎𝑎 ∗ 𝑛𝑛 + 𝑏𝑏, we can calculate the encryption time cost for Approach A at various
numbers of attributes. This allows us to compare the encryption time cost for the proposed
approach against other existing approaches. It's important to note that the formula's specific
values of "a" and "b" will depend on the implementation details, encryption algorithm,
hardware infrastructure, and other factors related to the proposed approach. These coefficients
need to be determined through performance testing and benchmarking experiments specific to
the proposed approach. Fig. 3 showcases the encryption cost for the data owner across various
approaches, with the number of attributes in the system as the x-axis and the time in
milliseconds (ms) as the y-axis. In this figure, the encryption cost for the data owner is
measured in milliseconds (ms) for different numbers of attributes in the system. The proposed
approach is compared against three existing approaches (Attribute-Based PPDS [21], MOPSE
[24], and P-ABE [27]). By comparing the values across the approaches, we can gain insights
into the relative encryption time costs associated with different numbers of attributes. For
example, at 10 attributes, the proposed approach has an encryption time cost of 16 ms, while
Attribute-Based PPDS [21], MOPSE [24], and P-ABE [27] have costs of 22 ms, 18 ms, and
21 ms, respectively. By comparing the two methods, it is possible to assess how well the
suggested strategy performs in terms of the cost of the encryption process for various attribute
sizes.

4.3 Decryption cost for data sharer
To compare the decryption cost for the data sharer in detail and calculate it using a
mathematical formula, let's denote the number of attributes in the system as "n" and the
decryption time cost for each approach as follows:
Attribute-Based PPDS [21]:𝑇𝑇𝐴𝐴(𝑛𝑛)MOPSE [24]: 𝑇𝑇𝐵𝐵(𝑛𝑛)P-ABE [27]: 𝑇𝑇𝐶𝐶(𝑛𝑛) Proposed Approach:
𝑇𝑇𝑃𝑃(𝑛𝑛). We can express the decryption time cost for each approach as a function of the number
of attributes.
Let's consider a generic formula for the decryption time cost:
𝑇𝑇(𝑛𝑛) = 𝑎𝑎 ∗ 𝑛𝑛𝑏𝑏 + 𝑐𝑐,
where "a," "b," and "c" are coefficients that represent the specific characteristics and
performance of each approach. The coefficient "a" represents the time required to decrypt each
attribute, indicating the decryption time cost per attribute. It captures the complexity of the
decryption algorithm used in the approach. The coefficient "b" represents the scaling factor
that determines how the decryption time cost scales with the number of attributes.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3197

5 10 15 20 25
5

10

15

20

25

30

Ti
m

e
in

 m
ill

is
ec

on
ds

 (m
s)

Number of attributes in the system

 Proposed Approach
 CP-ABE [27]
 MOPSE [24]
 Attribute-Based PPDS [21]

Fig. 4. Comparison of the decryption cost for data sharer

The coefficient "c" represents any fixed overhead or constant time required for decryption

that does not depend on the number of attributes. By plugging different values for "n" into the
formula T(n), we can calculate the decryption time cost for each approach at various numbers
of attributes. This allows us to compare the decryption time cost of the proposed approach
against the existing approaches. It's important to note that the specific values of "a," "b," and
"c" in the formula will depend on the implementation details, decryption algorithms, hardware
infrastructure, and other factors related to each approach. These coefficients must be
determined through performance testing and benchmarking experiments specific to each
approach. Fig. 4 showcases the decryption cost for the data sharer across three existing
approaches and the proposed approach, with the number of attributes in the system as the x-
axis and the time in milliseconds (ms) as the y-axis. In this figure, we compare the decryption
time cost for the data sharer across three existing approaches (Attribute-based PPDS [21],
MOPSE [24], and P-ABE [27]) and the proposed approach. The values in the figure represent
the decryption time cost in milliseconds for different numbers of attributes in the system.
Attribute-based PPDS [21], MOPSE [24], and P-ABE [27] are the existing approaches, while
the Proposed Approach represents the proposed solution in the research. The decryption time
cost is measured for the data sharer, indicating the time required for the sharer to decrypt the
encrypted data. As the number of attributes in the system increases from 5 to 25, we can
observe the decryption time cost for each approach. The values in the figure demonstrate the
relative decryption time cost for the different approaches at various attribute sizes.

4.4 Communication overhead comparison of the ciphertext
Communication overhead refers to the additional data that needs to be transmitted over a
network or communication channel when encrypting and transmitting ciphertext. Comparing
the communication overhead of the ciphertext involves evaluating the size of the ciphertext
for different approaches or scenarios. When comparing the communication overhead of the
ciphertext, we consider the impact of encryption algorithms, encryption modes, padding
schemes, and any additional metadata or information transmitted along with the ciphertext.
These variables and the number of attributes or elements used in the encryption process might
affect the ciphertext size. The size of the sent data, which is frequently denoted in kilobytes
(KB) or bytes (B), is the standard unit of measurement for the communication overhead of the
ciphertext. A smaller ciphertext size generally implies lower communication overhead,
requiring less network bandwidth and storage space.

3198 Poorani et al.: Privacy-Preserving Cloud Data Security: Integrating
the Novel Opacus Encryption and Blockchain Key Management

5 10 15 20 25
40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

Co
m

m
un

ic
at

io
n

co
st

 o
f t

he
 c

ip
he

rte
xt

 in
 k

ilo
by

te
s

(K
B)

Number of attributes in the access structure

 Proposed Approach
 CP-ABE [27]
 MOPSE [24]
 Attribute-Based PPDS [21]

Fig. 5. Communication overhead comparison of the cipher text

Fig. 5 showcases the communication overhead comparison of the ciphertext for three

existing approaches and the proposed approach, with the number of attributes in the access
structure as the x-axis and the communication cost of the ciphertext in kilobytes (KB) as the
y-axis. In this figure, we compare the communication overhead of the ciphertext for three
existing approaches (Attribute-Based PPDS [21], MOPSE [24], and P-ABE [27]) and the
proposed approach. The values in the following figure show the ciphertext's transmission
expense in kilobytes for various access structures’ attribute counts. The quantity of
information that must be transferred through the channel of communication is referred to as
the ciphertext's communication cost.

As the number of attributes in the access structure increases from 5 to 25, we can observe
the communication overhead for each approach. The values in the figure demonstrate the
relative communication cost of the ciphertext for different approaches and attribute sizes. For
example, at 10 attributes, Attribute-Based PPDS [21] has a communication cost of 84 KB,
MOPSE [24] has a cost of 74 KB, P-ABE [27] has a cost of 87 KB, and the Proposed Approach
has a cost of 74 KB. By comparing the two methods, it is possible to assess how well the
suggested strategy performs in terms of communication overhead for various attribute sizes.

4.5 Average time cost of index construction (ATCIC)
The average time required to develop an index structure for a specific data collection is the
mean cost of index building. It is a crucial performance indicator that measures how effective
and scalable the indexing process is. Index construction involves creating a data structure that
enables efficient and fast information retrieval from a large dataset. The process typically
includes data parsing, preprocessing, feature extraction, and organizing the data into an
optimized index structure. The average time cost of index construction is influenced by several
factors, including the dataset's size, the indexing algorithm's complexity, the computational
resources available, and any additional preprocessing or optimization techniques employed.
To calculate the average time cost of index construction for different numbers of data files, we
can use the following formula:
𝑇𝑇(𝑛𝑛) = (𝛴𝛴𝑡𝑡𝑖𝑖)

𝑛𝑛
,

where T(n) represents the ATCIC, "𝛴𝛴𝑡𝑡𝑖𝑖" represents the sum of individual index construction
times for each data file, and "n" represents the overall number of data files. To calculate the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3199

average time cost for each approach in the figure, calculate the sum of index construction times
for a given number of data files and subtract it from the overall number of data files. This
would yield the ATCIC for that specific number of data files.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

40

80

120

160

200

240

280

320

360

400
In

de
x c

on
st

ru
ct

io
n

tim
e i

n
se

co
nd

s (
s)

Number of data files

 Proposed Approach
 CP-ABE [27]
 MOPSE [24]
 Attribute-Based PPDS [21]

Fig. 6. Average time cost of index construction

Fig. 6 showcases the ATCIC for three existing approaches and the proposed approach.

The amount of data files is represented on the x-axis, while the index construction time is
shown on the y-axis in seconds (s). In this figure, we contrast the mean time required for index
building for three current methods with the suggested method. The values in the figure
represent the time needed to construct the index, on average, for other numbers of data files.
Attribute-based PPDS [21], MOPSE [24], and P-ABE [27] are the existing approaches. The
index construction time refers to the duration it takes to build an index structure that allows
for efficient retrieval of information from the data files. We can observe the mean processing
required for each strategy as data files rise from 100 to 1000. The numbers shown in the figure
show how efficiently index construction varies depending on the strategy used and how the
quantity of data files affects building time. For example, with 500 data files, Attribute-Based
PPDS [21] has an average index construction time of 63.7 seconds, MOPSE [24] takes 52.1
seconds, P-ABE [27] requires 58.6 seconds, and the Proposed Approach completes the index
construction in 49.2 seconds. This comparison allows for evaluating the performance of the
proposed approach against the existing approaches in terms of index construction time for
varying numbers of data files.

4.6 Privacy-Performance Trade-offs
Differential Privacy ensures that sensitive information remains private, even when statistical
analysis is performed on the data. It provides a rigorous and quantifiable privacy guarantee.
Fig. 7 represents the Privacy-Performance Trade-offs for the Proposed Approach (with
Differential Privacy). This figure illustrates the relationship between the privacy parameter (ε)
and encryption time, a critical performance metric for data owners. As ε decreases, indicating
stronger privacy protection, there is a corresponding increase in encryption time. Conversely,
as ε increases, encryption time decreases. This demonstrates the inherent trade-off between
privacy and performance, allowing users to make informed decisions based on their specific
requirements.

3200 Poorani et al.: Privacy-Preserving Cloud Data Security: Integrating
the Novel Opacus Encryption and Blockchain Key Management

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

E
nc

ry
pt

io
n

T
im

e
(m

s)

Privacy Parameter (ε)

Privacy - Trade-offs

Fig. 7. Privacy-Performance Trade-offs for Proposed Approach

Choosing an appropriate ε value depends on the specific use case and the acceptable trade-

off between privacy and data utility. A lower ε value is suitable for scenarios where strong
privacy protection is critical, such as healthcare or personal finance applications. In contrast,
a higher ε value may be acceptable in cases where the emphasis is on data utility, and the risk
to individual privacy is lower, such as aggregate statistical analysis. Our experiments not only
showcase the feasibility of our approach but also provide empirical evidence of how privacy
parameters impact performance. By conducting these experiments, we have demonstrated the
practical use of Differential Privacy in our scheme and how it allows users to tailor their
privacy preferences to meet their individual needs while maintaining robust data security.

5. Conclusion

This paper proposes an integrated approach to cloud data security that leverages novel Opacus
encryption, CogniGate Protocol, index trees, and blockchain key management. The proposed
system is highly effective at protecting cloud data while preserving privacy and maintaining
high levels of usability and performance. The simulations and tests on an actual data set show
that our suggested solution works as intended. Additionally, we explored the role of
differential privacy in the integrated approach, showing how it can be used to further enhance
privacy protection without compromising performance. We also presented a revolutionary key
management method based on blockchain to address the key management challenges
associated with our approach.

Future work can focus on improving the performance of the proposed system by
optimizing the Opacus encryption scheme and index trees and exploring the use of other
homomorphic encryption schemes. Additionally, further research can be done on integrating
blockchain and innovative contract technologies to enhance the decentralization of the key
management system. Furthermore, the proposed approach can be extended to support more
complex access control policies and authentication mechanisms and to address the challenges
associated with dynamic access control in cloud environments. Finally, the proposed system
can be evaluated on a larger scale, using more diverse datasets and real-world cloud
environments to validate its effectiveness and scalability.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3201

References
[1] R. Yugha and S. Chithra, "A survey on technologies and security protocols: Reference for future

generation iot," Journal of Network and Computer Applications, vol. 169, p. 102763, 2020.
Article (CrossRef Link).

[2] K. R. Choo, S. Gritzalis, and J. H. Park, "Cryptographic solutions for industrial internet-of-things:
Research challenges and opportunities," IEEE Transactions on Industrial Informatics, vol. 14, no.
8, pp. 3567–3569, Aug 2018. Article (CrossRef Link).

[3] P.M. Joe Prathap, "Ensuring privacy of data and mined results of data possessor in collaborative
ARM," Pervasive Computing and Social Networking, pp. 431 – 444, 2022.
Article (CrossRef Link).

[4] J. Zhang, Z. Wang, L. Shang, D. Lu, and J. Ma, "Btnc: A blockchain based trusted network
connection protocol in iot," Journal of Paralleland Distributed Computing, vol. 143, pp. 1 – 16,
2020.Article (CrossRef Link).

[5] Dhinakaran D, Joe Prathap P. M, "Protection of data privacy from vulnerability using two-fish
technique with Apriori algorithm in data mining," The Journal of Supercomputing, 78(16), 17559–
17593, 2022. Article (CrossRef Link).

[6] M. Onik, C. Kim, and J. Yang, "Personal data privacy challenges of the fourth industrial
revolution," in Proc. of 2019 21st International Conference on Advanced Communication
Technology (ICACT), pp. 635–638, Feb2019. Article (CrossRef Link).

[7] D. Selvaraj, S. M. Udhaya Sankar, T. P. Anish, "Outsourced Analysis of Encrypted Graphs in the
Cloud with Privacy Protection," SSRG International Journal of Electrical and Electronics
Engineering, vol. 10, no. 1, pp. 53-62, 2023. Article (CrossRef Link).

[8] H. Chen, Z. Huang, K. Laine, and P. Rindal, "Labeled psi from fully homomorphic encryption
with malicious security," in Proc. of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18, New York, NY, USA, pp. 1223–1237, 2018.
Article (CrossRef Link).

[9] Joe Prathap P. M, Selvaraj D, Arul Kumar D and Murugeshwari B, "Mining Privacy-Preserving
Association Rules based on Parallel Processing in Cloud Computing," International Journal of
Engineering Trends and Technology, vol. 70, no. 3, pp. 284-294, 2022. Article (CrossRef Link).

[10] A. Sanchez-Gomez, J. Diaz, L. Hernandez-Encinas, and D. Arroyo, "Review of the main security
threats and challenges in free-access public cloud storage servers," in Computer and Network
Security Essentials, Cham, Switzerland: Springer, 2018, pp. 263–281. Article (CrossRef Link).

[11] L. Srinivasan, D. Selvaraj, S. M. Udhaya Sankar, "Leveraging Semi-Supervised Graph Learning
for Enhanced Diabetic Retinopathy Detection," SSRG International Journal of Electronics and
Communication Engineering, vol. 10, no. 8, pp. 9-21, 2023. Article (CrossRef Link).

[12] D. Dhinakaran and P. M. Joe Prathap, "Preserving data confidentiality in association rule mining
using data share allocator algorithm," Intelligent Automation & Soft Computing, vol. 33, no.3, pp.
1877–1892, 2022. Article (CrossRef Link).

[13] O. A. Khashan and N. M. Khafajah, "Secure stored images using transparent crypto filter driver,"
International Journal of Network Security, vol. 20, no. 6, pp. 1053–1060, 2018.
Article (CrossRef Link).

[14] Dhinakaran, D., Selvaraj, D., Udhaya Sankar, S.M., Pavithra, S., Boomika, R. “Assistive System
for the Blind with Voice Output Based on Optical Character Recognition,” in Proc. of
International Conference on Innovative Computing and Communications, 2023.
Article (CrossRef Link).

[15] Q. Liu, G. Wang, X. Liu, T. Peng, and J. Wu, "Achieving reliable and secure services in cloud
computing environments," Computers and Electrical Engineering, vol. 59, pp. 153–164, Apr.
2017. Article (CrossRef Link).

[16] Z. Gao, Q. Cheng, X. Li, and S.-B. Xia, "Cloud-assisted privacy-preserving profile-matching
scheme under multiple keys in mobile social network," Cluster Computing, vol. 22, no. 1, pp.
1655–1663, 2019. Article (CrossRef Link).

https://doi.org/10.1016/j.jnca.2020.102763
https://doi.org/10.1109/TII.2018.2841049
https://doi.org/10.1007/978-981-16-5640-8_34
https://doi.org/10.1016/j.jpdc.2020.04.004
https://doi.org/10.1007/s11227-022-04517-0
https://doi.org/10.23919/ICACT.2019.8701932
https://doi.org/10.14445/23488379/IJEEE-V10I1P105
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.14445/22315381/IJETT-V70I3P232
https://doi.org/10.1007/978-3-319-58424-9_15
https://doi.org/10.14445/23488549/IJECE-V10I8P102
https://doi.org/10.32604/iasc.2022.024509
http://ijns.jalaxy.com.tw/contents/ijns-v20-n6/ijns-2018-v20-n6-p1053-1060.pdf
https://doi.org/10.1007/978-981-19-3679-1_1
https://doi.org/10.1016/j.compeleceng.2016.10.005
https://doi.org/10.1007/s10586-017-1649-y

3202 Poorani et al.: Privacy-Preserving Cloud Data Security: Integrating
the Novel Opacus Encryption and Blockchain Key Management

[17] Pawar, A.B., Ghumbre, S.U. and Jogdand, R.M., "Privacy preserving model-based authentication
and data security in cloud computing," International Journal of Pervasive Computing and
Communications, vol. 19, No. 2, pp. 173-190, 2023. Article (CrossRef Link).

[18] Gajraj Kuldeep, Qi Zhang, "Multi-class privacy-preserving cloud computing based on
compressive sensing for IoT," Journal of Information Security and Applications, vol. 66, 103139,
2022. Article (CrossRef Link).

[19] V. Sarala, P. Shanmugapriya, "DLFPM-SSO-PE: privacy-preserving and security of intermediate
data in cloud storage," Distributed Parallel Databases, vol. 40, pp. 815–833, 2022.
Article (CrossRef Link).

[20] Gupta, R., Kanungo, P., Dagdee, N., Madhu, G., Sahoo, K.S., Jhanjhi, N.Z., Masud, M., Almalki,
N.S., AlZain, M.A. "Secured and Privacy-Preserving Multi-Authority Access Control System for
Cloud-Based Healthcare Data Sharing," Sensors, 23, 2617, 2023. Article (CrossRef Link).

[21] H. Xiong, H. Zhang and J. Sun, "Attribute-Based Privacy-Preserving Data Sharing for Dynamic
Groups in Cloud Computing," IEEE Systems Journal, vol. 13, no. 3, pp. 2739-2750, Sept. 2019.
Article (CrossRef Link).

[22] S. Xu, Y. Li, R. Deng, Y. Zhang, X. Luo, and X. Liu, "Lightweight and expressive fine-grained
access control for healthcare internet-of-things," IEEE Transactions on Cloud Computing, vol. 10,
no. 1, pp. 474-490, 2022. Article (CrossRef Link).

[23] W. A. Amiri, M. Baza, K. Banawan, M. Mahmoud, W. Alasmary and K. Akkaya, "Privacy-
Preserving Smart Parking System Using Blockchain and Private Information Retrieval," in Proc.
of 2019 International Conference on Smart Applications, Communications and Networking
(SmartNets), Sharm El Sheikh, Egypt, pp. 1-6, 2019. Article (CrossRef Link).

[24] X. Yao, Y. Lin, Q. Liu and J. Zhang, "Privacy-Preserving Search Over Encrypted Personal Health
Record In Multi-Source Cloud," IEEE Access, vol. 6, pp. 3809-3823, 2018.
Article (CrossRef Link).

[25] S. Xu, G. Yang, Y. Mu, and R. H. Deng, "Secure fine-grained access control and data sharing for
dynamic groups in the cloud," IEEE Transactions on Information Forensics and Security, vol. 13,
no. 8, pp. 2101–2113, 2018. Article (CrossRef Link).

[26] J. Zhang, G. Xu, X. Chen, H. Ahmad, X. Liu et al., "Towards privacy-preserving cloud storage: a
blockchain approach," Computers, Materials & Continua, vol. 69, no.3, pp. 2903–2916, 2021.
Article (CrossRef Link).

[27] L. Zhang, Y. Cui and Y. Mu, "Improving Security and Privacy Attribute Based Data Sharing in
Cloud Computing," IEEE Systems Journal, vol. 14, no. 1, pp. 387-397, March 2020.
Article (CrossRef Link).

[28] Anish, T.P., Shanmuganathan, C., Vinoth Kumar, V., “Hybrid Feature Extraction for Analysis of
Network System Security—IDS,” in Proc. of ICCEDE 2022: Cybersecurity and Evolutionary
Data Engineering, pp. 25-36, 2023. Article (CrossRef Link).

[29] M. Harini, D. Prabhu, S. M. Udhaya Sankar, V. Pooja and P. Kokila Sruthi, "Levarging Blockchain
for Transparency in Agriculture Supply Chain Management Using IoT and Machine Learning," in
Proc. of 2023 World Conference on Communication & Computing (WCONF), RAIPUR, India, pp.
1-6, 2023. Article (CrossRef Link).

[30] K. Y. Kumar, N. J. Kumar, D. Dhinakaran, S. M. Udhaya Sankar, U. J. Kumar and V. Yuvaraj,
"Optimized Retrieval of Data from Cloud using Hybridization of Bellstra Algorithm," in Proc. of
2023 World Conference on Communication & Computing (WCONF), RAIPUR, India, pp. 1-6,
2023. Article (CrossRef Link).

[31] Jena Catherine Bel D, Esther C, Zionna Sen G B, Tamizhmalar D, Anish T. P, "Trustworthy Cloud
Storage Data Protection based on Blockchain Technology," in Proc. of 2022 International
Conference on Edge Computing and Applications (ICECAA), pp. 538-543, 2022.
Article (CrossRef Link).

https://doi.org/10.1108/IJPCC-11-2020-0193
https://doi.org/10.1016/j.jisa.2022.103139
https://doi.org/10.1007/s10619-021-07352-z
https://doi.org/10.3390/s23052617
https://doi.org/10.1109/JSYST.2018.2865221
https://doi.org/10.1109/TCC.2019.2936481
https://doi.org/10.1109/SmartNets48225.2019.9069783
https://doi.org/10.1109/ACCESS.2018.2793304
https://doi.org/10.1109/TIFS.2018.2810065
https://doi.org/10.32604/cmc.2021.017227
https://doi.org/10.1109/JSYST.2019.2911391
https://doi.org/10.1007/978-981-99-5080-5_3
https://doi.org/10.1109/WCONF58270.2023.10235156
https://doi.org/10.1109/WCONF58270.2023.10234974
https://doi.org/10.1109/ICECAA55415.2022.9936299

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3203

S. Poorani is currently working as an assistant professor in Sri Venkateswara College of
Engineering, Chennai. She received her B.E. degree in Computer Science and Engineering
from Anna University, Chennai, in 2006, and her M.E. degree in Multimedia Technology
from Anna University, Chennai, in 2010. Since 2010. Her research interests include network
security, cryptography, cloud computing, and machine learning. She has published over 15
research papers in various refereed international journals and international conferences. She
has published a few book chapters and patents in various thrust areas in information
technology.

Anitha R is working at Sri Venkateswara College of Engineering, Sriperumbudur, as a
professor and head in the Department of Computer Science & Engineering with experience
of more than 20 years in Teaching and research. She received her B.E from Bharathidasan
University and her M.E and Ph.D. in the niche area of Cloud Computing from Anna
University, Chennai-25. She has received a Senior Research Fellowship under a meritorious
scheme from UGC-New Delhi. Her primary research interests are in Grid and Cloud
Computing, Big Data Analytics, Software networking and Artificial Intelligence and deep
Learning. Specifically, she is interested in Cloud Security and data storage in large-scale
distributed databases and Data Analytics. As recognition towards her research work, she has
received a Financial Grants of Rs. 1.0 lakhs from CSIR-New Delhi to present her research
work at the University of Washington, Seattle, USA, in 2013. She has published over 40
research papers in various refereed international journals and conferences. As a principal
investigator, she has completed a funded project worth Rs. 22 lakhs from DST-SERB, New
Delhi Project, titled "DigiCert: Data Security in Federated DigiCloud Environment using
Homomorphic Technique". She has received a funded project from AICTE worth Rs. 22
lakhs in Artificial Intelligence. She has also received funds from TNSCST and completed
the project in Green Cloud Computing.

