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Abstract 

 
In this paper, the downlink of the multicast based spatial modulation systems is investigated. 
Specifically, physical layer multicasting is introduced to increase the number of access users 
and to improve the communication rate of the spatial modulation system in which only single 
radio frequency chain is activated in each transmission. To minimize the bit error rate (BER) 
of the multicast based spatial modulation system, a joint optimizing algorithm of antenna 
selection and multicast precoding is proposed. Firstly, the joint optimization is transformed 
into a mixed-integer non-linear program based on single-stage reformulation. Then, a novel 
iterative algorithm based on the idea of branch and bound is proposed to obtain the quasi-
optimal solution. Furthermore, in order to balance the performance and time complexity, a 
low-complexity deflation algorithm based on the successive convex approximation is 
proposed which can obtain a sub-optimal solution. Finally, numerical results are showed that 
the convergence of our proposed iterative algorithm is between 10 and 15 iterations and the 
signal-to-noise-ratio (SNR) of the iterative algorithm is 1-2dB lower than the exhaustive 
search based algorithm under the same BER accuracy conditions. 
 
 

Keywords: Spatial modulation, antenna selection, multicast, successive convex 
approximation. 
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1. Introduction 

Spatial modulation is an energy efficient transmission scheme, in which only one antenna is 
activated during each transmission. Hence only one radio frequency (RF) chain is needed in 
the spatial modulation systems (SMSs). In SMSs, the input signals are transmitted at both the 
transmit antenna (TA) domain and amplitude-phase modulation (APM) domain [1]. Although 
SMSs utilize the spatial dimension to transmit information bits, they lack transmit diversity 
due to limited number of active transmit antennas. Therefore, the achievable transmission rate 
is imposed a few limitations at the APM domain. On the other hand, physical layer 
multicasting is a spectral efficient transmission scheme, in which a common message is 
multicasted to a couple of users [2]. The integration of multicast and spatial modulation is 
highly desired. The multicast based SMSs can achieve good balance between the energy 
efficiency and spectral efficiency. 

When channel state information is available at the base station, transmit antenna selection 
and transmit precoding can be employed to enhance the performance of SMSs. Specifically, 
the diversity order can be obtained by employing transmit antenna selection [3], [4]. Moreover, 
for SMSs, when the total number of transmit antennas is not the power of 2 in practice, the 
antenna selection process is also needed [4]. On the other hand, the precoding can be optimized 
to shape the received APM signal constellation and boost the bit error rate (BER) performance 
[5]–[7]. Note that in SMSs, only one antenna is activated in each transmission period and the 
precoding matrix should be diagonal [7]. 

In the references of multicast spatial modulation, reference [9] firstly analyzes the BER 
performance of the multicast SMSs and provide a closed-form asymptotic BER upper by 
exploiting the system statistics. Finally, reference [9] studies the impact of the receiver number 
on BER in the multicast spatial modulation. Furthermore, reference [10] proposes two 
heuristic transmit mode selection algorithms, including tree pruning technique and 
approximating the signal constellation. Then reference [10] also design a precoder approach 
to improve the system. Similarly, reference [8] considers both antenna selection and the 
precoding coefficients, and gives the optimization problem. However, the optimization 
problem was not solved directly and reference [8] uses exhaustive search algorithm and 
convex optimization tools in turn to solve antenna selection and precoding design problems. 

In this paper, antenna selection and multicast precoding in multicast based SMSs are design 
jointly. To facilitate the joint optimization of antenna selection and precoding, a single-stage 
reformulation is proposed to reconstruct the problem of joint optimization into a mix-integer 
non-linear program. Secondly, a branch and bound based algorithm is designed to obtain the 
quasi-optimal solution, whose convergence behavior and performance superiority are verified 
by the numerical results. Specifically, when the number of iterations reaches 10 to 15, the 
proposed branch and bound based algorithm converges with the accuracy of 0.0001, which is 
defined as the gap between the obtained upper bounds and lower bounds. This shows that the 
proposed algorithm converges fast, thus proving the effectiveness of joint antenna selection 
and multicast precoding in SMS. Moreover, a low-complexity deflation algorithm based on 
successive convex approximation (SCA) is proposed to obtain a suboptimal solution, which 
can achieve BER performance close to the exhaustive search based algorithm. To the best of 
our knowledge, this is the first work studying the single-stage reformulation for jointly solving 
the antenna selection and precoding problems. Meanwhile, under the same BER condition, the 
SNR corresponding to the deflation algorithm achieve 1dB lower than the result of the 
exhaustive search based algorithm.  
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Notations: We employ uppercase boldface letters for matrices and lowercase boldface for 
vectors. ( ) , ( )Tr  , p

 , ( )T
 , ( )H

 and ( )Re   return the expectation, trace, pl -norm, transpose, 
conjugate transpose and the real part of the input respectively. 

2. System Description 
As shown in Fig. 1, we consider the downlink of a multicasting SMS where a base station 

(BS) multicasts a common message to K users simultaneously using both the TA domain and 
APM domain signal transmission [1]. The BS is equipped with totN antennas whereas each 
user equipment (UE) has RN  antennas. For brevity, we denote { }1,2,..., K=  and 

{ }tot tot1, 2,..., N= as the user set and transmit antenna set, respectively.  

 
Fig. 1. Downlink of a multicasting SMS. 

2.1 Signal Model 
In each transmission, the BS selects SMN  antennas from totN  to perform spatial 

modulation, where SMN is power of 2 [3]. There are total SM

tot

N
NC  possible combinations of 

antenna selection. I   is denoted as the set of selected SMN  antennas with SMI N= , and   as 
the set of enumerations of all possible antenna selections with SM

tot

N
NC= . Let totRN N

k
×∈H   be the 

channel matrix from the BS to the k -th user. Then after antenna selection, the channel of user 
k  used for spatial modulation becomes SM tot

,
N N

k I
×∈H   where I ∈ . In each transmission, the 

first 2 SMlog N  bits of the transmitted signal are mapped to one point in the spatial constellation 
set defined as 
 1{ ,..., ,..., }

SMi Ne e e=  (1) 
where SM 1N

ie ×∈  is an all-zero vector except for the i -th entry, which is 1. The selection of ie  
indicates that the i -th antenna among all the selected SMN  antennas is activated. Next, the 
last 2log M  bits are transmitted from the activated antenna by M-QAM or M-PSK signal 
constellation defined by 
 1{ ,..., ,..., }m Ms s s=  (2) 

where ms ∈  with { }2 1ms =  

BS
NSM

Ntot

1
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The spectral efficiency in the described system can be computed as 2 SMlog N M  bits per 
channel use. The transmitted spatial modulation constellation   with cardinality SMN M  
is the Cartesian product of   and   which is given by 
 1 1{ ,..., ,..., }

SMi m N Me s e s e s=  (3) 
Next, denote the transmitted spatial modulation symbol as SM 1N

l i mx e s ×= ∈  with 
lx ∈ . Then lx  is precoded by a diagonal matrix SM SMdiag( ) N N×= ∈W w 

 with 
SM

1 SM

1w ,..., w
T N

I I
× = ∈ w   given I . Then the received signal at user k  given antenna selection 

I ∈  can be written as 
 , , w

i ik k I l k k I I m kx s= + = +y H W n h n  (4) 
Where, iI  is the i -th element in I  and , ik Ih  is the i -th column in ,k IH  which also is the iI -
th column in the total channel matrix kH . And w

iI  is the precoding coefficient for antenna 
iI  in tot . Moreover, ( )R

20,k Nσn I   denotes the additive noise at user k . 
At the receiver side, user k  decodes the TA domain signal (i.e., index of the activated 

antenna) and APM domain signal jointly with maximum likelihood (ML) detector as follows 
 ML 2

, 2ˆ
ˆ ˆarg min || || ,

l
l k k I lx

x x k
∈

= − ∀ ∈y H W


  (5) 

The error performance of the ML detector at user k  can be approximated by the sum of the 
pairwise error probability (PEP), which is given by [5] 

 ( ) ( )
SM SM

Error
,2

1 1,

1, ,
2

N M N M

k k lt
l t t l

P I Q d I
σ= = ≠

 
≤   

 
∑ ∑w w  (6) 

where, 
2

21( )
2

y

x

Q x e dy
π

∞
−

= ∫  denotes the Gaussian tail probability [1], and 

( ) 2
, , 2

, ( )k lt k I l td I x x= −w H W  is the squared Euclidian distance between two different spatial 

modulation symbols lx ∈  and tx ∈  observed at receiver k . Similar to [1] and [5], we 
employ the nearest neighbor approximation for PEP in (6) and we have 

 e
min2

1( , ) ( , )
2

k
kp I Q d Iλ

σ
 

=   
 

w w
 (7) 

where, λ  is the number of neighboring constellation points [1] and 

 

( ) ( )

SM

2
min , 2,

2

, ,, , 2
,

( , ) ( , )

, min

min w w

l t
l t

i i j j

m n

k
k I l tx x

x x

k I I m k I I ni j i j
s s
i m j n

d I x x

s s

∈
≠

∈ ≤
∈
≠

= −

= −

w H W

h h






 (8) 

In multicast system, the system performance is dominated by the worst user. Similar to 
(9), the BER performance of the considered multicasting SMS is defined by the worst BER 
among all the users, and can be written by 

 ( ) ( )e e, max ,kk
P I P I

∈
=w w 


 (9) 

2.2 Problem Formulation 
In this paper, the BER of the multicasting SMS by jointly optimizing the transmit antenna 

selection and multicast precoding subject is minimized to the power constraint at the BS, 
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which can be formulated as 
 ( )e

,
min max ,kI k

P I
∈w

w


 (10a) 

 
2

2
. . Ts t P≤w  (10b) 

where, TP  is the total power constraint at the BS. 
Since ( )e ,kP I w  in (7) is a monotonically decreasing function of min ( , )kd I w , the objective 

(10a) is equivalent to , minmax min ( , )k
I k d I∈w w . Hence, problem (10) can be equivalently 

written as 

 
SM

2

, ,, ,, 2
,

( , ) ( , )

max min min w w
i i j j

m n

k I I m k I I nk i j i jI
s s
i m j n

s s
∈ ∈ ≤

∈
≠

−
W

h h




 (11) 

 2

2
. . Ts t P≤w  (11b) 

3. Single-stage Reformulation 
In the formulation (11), the antenna selection variable I  is a set of antenna indices, which 

cannot be designed jointly with precoding coefficients w unless enumerating all possible 
antenna combinations as in formulation (8). In what follows, we integrate the antenna selection 
and multicast precoding into an equivalent single-stage reformulation of (11), by which we 
can leverage the tools of optimization to design them jointly. To this end, we introduce a binary 
vector 

tot1,..., Nb b =  b  to denote the antenna selection, i.e., 1ib =  if antenna i  is selected; 
otherwise, 0ib = . Since there are SMN  antennas selected, we have tot

SM
1

N

i
i

b N
=

=∑ . Note that there 

is an one-to-one mapping between b  and I .Next, using the idea of Big-M formulation (11), 
formulation (11) is reformulated as follows   

 
SM

2

, , 2, ,,
,

( , ) ( , )

max min min
m n

k
k i i m k j j n ijk i j i jI

s s
i m j n

v s v s
∈ ∈ ≤

∈
≠

− +Φ
W

h h




 (12a) 

 { } tot. . 0,1 ,is t b i∈ ∀ ∈  (12b) 

 
tot

1

N

i SM
i

b N
=

=∑  (12c) 

 2
tot,i i Tv b P i≤ ∀ ∈  (12d) 

 2

2 TP≤v  (12e) 
where ( ) ( )1 1k

ij i k j kb bΦ = − Ω + − Ω . Constant kΩ  has a sufficiently large value which should be 
chosen such that when 0ib =  or 0jb =  the term 

2

, , 2
k

k i i m k j j m ijv s v s− +Φh h  is inactive in the 
second min function of (12a) for every feasible channel realization, precoding coefficients, 
and APM symbols. A simple choice could be 

tot

2
, 2

max 2k T k ii
PΩ h


 . The variable iv  is the 

precoding coefficient. Besides, tot

tot

1
1,...,

T N
Nv v × = ∈ v  . Since there are SMN  antennas selected 

from totN , we have SM0
N=v  which is guaranteed by constraints (12c) and (12d). We note that 

the indices i , j  in (12) take values from 1 to totN , which is different from i , j  in (11) taking 
values from 1 to SMN . 
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Proposition 1: Problems (11) and (12) are equivalent.  
Proof: First, based on the definition of binary variable 1ib =  and constraint (12c), we can 

see that there is an one-to-one mapping between and I ∈ in (11) and b in (12). Also, 
constraints (12c) and (12d) ensure SM0

N=v  and only the selected antennas have non-zero 
precoding coefficients. Hence, there is an one-to-one mapping between w  in (11) and v  in 
(12). 

On the other hand, for the objective in (12a), we denote 

 
SM

2

min , , 2, ,
,

( , ) ( , )

( , ) min
m n

k k
k i i m k j j n iji j i j

s s
i m j n

d v s v s
∈ ≤

∈
≠

= − +Φb v h h




 (13) 

Then to prove that (11) and (12) are equivalent, we only need to prove min min( , ) ( , )k kd d I=b v w   

for any given antenna selection, precoding coefficients and user index. Suppose { }SM1,..., NI I I=  
are the selected SMN  antennas and the corresponding precoding coefficients are 

{ }1 SM
w ,..., w

NI I=w . Let tot \cI I=  , i.e., the relative complement of set I  with respect to set totN , 
denote the set of unused antennas. Hence we have 1ib =  and wi iv =  if i I∈ ; otherwise, if 

ci I∈  , we have 0ib =  and 0iv = . Then it follows that { }, ,
min min min( , ) min ( , ), ( , )

ck k I k Id d d=b v b v b v   , 

where 

 
2,

min , , 2, ,
,

( , ) ( , )

( , ) min
m n

k I
k i i m k j j ni j I i j

s s
i m j n

d v s v s
∈ ≤

∈
≠

= −b v h h



 (14) 

 
2,

min , , 2|| ,
,

,
( , ) ( , )

( , ) min
c

c c

m n

k I k
k i i m k j j n ij

i I j I
i j
s s
i m j n

d v s v s
∈ ∈
≤

∈
≠

= − +Φb v h h



 (15) 

where ||c ci I j I∈ ∈  means that at least one element in { , }i j  belongs to cI  , i.e., at least one 

element in { , }i jb b  is zero. 
Note that in (14), i  and j  are the indices of selected transmit antennas and 1i jb b= = . Hence, 

( ) ( )1 1 0i k j kb b− Ω + − Ω = .  

Recalling (8), we can obtain that ,
min min( , ) ( , )k I kd d=b v b v  . Since 

tot

2
, 2

max 2k T k ii
PΩ h


 , we have 

, ,
min min( , ) ( , )

ck I k Id d<b v b v   which results in 
,

min min min( , ) ( , ) ( , )k k I kd d d I= =b v b v w   . Hence, (11) and (12) 
are equivalent. 

 

4. Joint Antenna Selection and Multicast Precoding Design 
The single-stage reformulation in problem (12) is a mixed-integer non-linear program 

(MINLP), which is NP-hard to solve. Besides, the objective in (12a) is non-smooth and non-
convex. To proceed, we first show that problem (12) can be further reformulated into a mixed-
integer quadratically constrained quadratic programming (MI-QCQP) problem. 
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4.1 Equivalent formulation 
Proposition 2: The MINLP problem in (12) is equivalent to the following MI-QCQP 

problem 
 

( ) ( )

tot
,,,

,
, ,

max min min

m n

H k k
im jn ijk i j

i j
s s
i m j n

∈ ∈
≤

∈
≠

+Φ
b v

v R v
 



  (16a) 

 { } tot. . 0,1 ,is t b i∈ ∀ ∈  (16b) 

 
1

N

i SM
i

b N
=

=∑  (16c) 

 2
tot,i i Tv b P i≤ ∀ ∈  (16d) 

        2

2 TP≤v          (16e) 
where, , ,

k H T
im jn k k im jn=R H H Θ  is positive semidefinite matrix in which the matrix  

( )( ),

H

im jn i m j n i m j ns s s s= − −Θ e e e e . The operator   denotes the Hadamard product. Moreover, 
tot 1N

i
×∈e 

 is an all-zero vector except for the i -th entry, which is 1. 
Proof: In order to see the equivalence between the objective functions in (16a) and (12a), 

we denote the distance as 
2

, , ,
k
im jn k i i m k j j nd v s v s= −h h . Next, introduce a diagonal matrix 

tot totdiag( ) N N×= ∈V v   where diag( )v  represents the diagonal matrix which its main diagonal 
elements are the components of the vector v . Then we have 

 

( )
( )( ){ }

{ }
( )

2

,

,

(a)

,

,

Tr

=Tr

k
im jn k i m j n

HH H
k k i m j n i m j n

H H
k k im jn

H H T
k k im jn

H k
im jn

d s s

s s s s

= −

= − −

=

=

H V e e

V H H V e e e e

V H H VΘ

v H H Θ v

v R v



 (17) 

where, (a) follows from Eq. (1.10.6) in (12). Hence, the equivalence of problems (16) and (12) 
has been proved. 

Next, the MI-QCQP problem (16) can be further converted (16) to the following equivalent 
problem 
 

, ,
max

t
t

b v
 (18a) 

 
( ) ( )

,. . , , , ,

, , , ,

H k k
im jn ij

m n

s t t k i j i j

s s i m j n

+Φ ≥ ∀ ∈ ∈ ≤

∈ ≠

v R v  


 (18b) 

 ( ) ( )16b 16e−  (18c) 

4.2 Quasi-Optimal Solution Based on Branch and Bound 
In this subsection, we design a quasi-optimal algorithm for solving (18) by employing the 

branch and bound framework, in which branching and bounding are main tasks. In general, 
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the branching step divides the feasible region into subsets and constructs sub-problems with 
those subsets. The bounding step finds the upper and lower bounds for those sub-problems 
within the corresponding subset. Specifically, we denote ( ) ( ){ }, 16b 16eQ = −b v  as the feasible 
region. Then we branch the feasible region Q  according to integer variables b , and divide the 
original problem into sub-problems accordingly. 

Branching Step: Pick any index i , and we can divide the origin set Q  into two subsets 
( ) ( ){ }, 0, 16b 16eiQ b1 = = −b v  and ( ) ( ){ }, 1, 16b 16eiQ b2 = = −b v . Then the bounding steps described 

below are performed to obtain the upper and lower bounds of the original problem in these 
subsets respectively. Next, the subset with respect to the current overall upper bound is chosen 
to be further branched. 

Bounding Step: In this step, we calculate the upper and lower bounds for the objective of 
(18) in different subsets. For convenience, we introduce tot

tot

1
1,...,

N
Nξ ξ × = ∈ ξ   as the state 

vector for the integer variables b and the corresponding subset Qξ  in the branching step, the 
elements of which take values from {0,1, 1}− . Specifically, 1iξ =  or 0 indicates that 1ib =  or 
0. If 1iξ = − , ib  has not been branched yet. Denote { }tot 0or1iiξ ξ= ∈ =  . Then subset Qξ  
which is divided by ξ  can be written as { , | ( ), (16b) (16e)}i iQ b i Aξ ξξ= = ∈ −b v .  

Next, to obtain the upper bound in subset Qξ , we relax the undetermined binary variables 
tot( \ )ib i Aξ∈  into 0 1ib≤ ≤ , and then solve problem (18) using the SCA framework [13], 

which convexity the nonconvex constraint (18b) and iteratively approximate the nonconvex 
problem to convex ones. Specifically, at SCA iteration l , the left-hand-side of (18b) can be 
lower bounded by its first-order Taylor series expansion around lv , and (18b) can 
approximated by 
 ( ), ,

, , ,2Re l H k l H k l k
im jn im jn i jR R t− + ≥v v v v Φ  (19) 

Then the approximated convex problem at SCA iteration l  can be written as 
 

, ,
max

t
t

b v
 (20a) 

 . . ,i is t b i ξξ= ∈  (20b) 

 tot0 1,ib i ξ≤ ≤ ∈   (20c) 

 ( ) ( ) ( )16c 16e , 19−  (20d) 
which is convex and can be solved by modern solvers. The SCA algorithm is summarized for 
obtaining v  giving ξ  in Algorithm 1. The value of t at convergence is the upper bound. 
 

Algorithm 1 SCA Algorithm for Obtaining ( , )tv  Given ξ  

1: Set : 0l = . Initialize starting points 0v . 
2: Repeat 

3:     Solve problem (20) at lv  to get the optimal solution * *( , )tv . 

4:     Update 1 *l+ =v v . 
5:     Set : 1l l= + . 
6: End  
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Function ( )* *, UBU  = b ξ  is defined to represent the processing for computing the upper 
bound, in which *U  is the obtained upper bound and tot

* * *
1 ,..., Nb b =  b  is not integral. In order 

to get the lower bound for the objective of (18) in Qξ , round *( )ib i Aξ∈  to 0 or 1, and denote 
the obtained integer variables as be b . Then similar to Algorithm 1, we apply SCA algorithm 
to solve (18) given be b , and the obtained lower bound is denoted as ( )* LB ,L = ξ b . If it is 
infeasible, the lower bound in subset Qξ  is *L = ∞ . 

The branching and bounding steps are performed iteratively until the overall upper bound 
and overall lower bound converge. The details of the proposed branch and bound algorithm 
for solving problem (18) is summarized in Algorithm 2. 

 
Algorithm 2  Algorithm Based on Branch and Bound 

1: Set the index of the Branch and Bound process : 0r = . 

2: Initialize state vector [ ] tot 1
init 1,..., 1 N ×= − − ∈ξ  . 

3: Initialize search space { }init= ξ . 

4: Get upper bound 0U  using ( ) ( )0 0 init, UBU =b ξ . 

5: Round 0b  to get integer vector 0b , Get lower bound using ( )0 init 0UB ,L = ξ b . 

6: While r rU L ε− >  

7:      Pick ∈ξ   for which UB( )rU = ξ . 

8:      Pick any index i  with 1i = −ξ . 

9:      Initialize state vector І П= =ξ ξ ξ . 

10:    Branch the selected subset by setting І 0i =ξ , 
П

1i =ξ . 

11:    Add Іξ  and Пξ  into  , remove ξ  from  . 

12:    Get upper bounds ( ) ( )І ІІ , UBU =b ξ , ( ) ( )П П П, UBU =b ξ . 

13:    Round 
І

b and Пb  to get 
І

b and Пb  respectively. 

14:    Get lower bounds: ( )І І ІUB ,L = ξ b , ( )П П ПUB ,L = ξ b . 

15:    Update upper bound and lower bound { }І П
1 min , ,r rU U U U+ = ,

{ }І П
1 min , ,r rL L L L+ = . 

16:    Set : 1r r= + . 
17: End 

4.3 Low-complexity Suboptimal Deflation Algorithm Based on SCA 
In this subsection, we propose a low-complexity algorithm for solving (18) in which the 

integer variables b  are treated by the deflation process [14]. At first, all totN  antennas are 
assumed to be selected. Next, we drop some poor communication link one by one until there 
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remains SMN  antennas, i.e., SM0
N=b . In each step of the deflation process, after the 

remaining set of antennas is determined, i.e., giving b , the precoding vector v  is obtained by 
solving (18) using the SCA framework similar to Algorithm 1.  

Then the approximated convex problem at SCA iteration l  can be formulated as 
 

,
max

t
t

v
 (21a) 

 ( ) ( ) ( ). . 16c 16e , 19s t −  (21b) 
The overall procedure of deflation SCA algorithm for solving problem (18) is summarized 

in Algorithm 3. 
 

Algorithm 3 Deflation Algorithm Based on SCA 

1: Initialize: tot1,ib i= ∀ ∈ , i.e., tot0
N=b . 

2: While SM0
N>b  

3:     Obtain v  using Algorithm 1. 

4:     Get the index 
tot

2

2
arg max i ivρ ∈=  . 

5:     Set : 0bρ = . 

6: End  
7: Obtain v  using Algorithm 1. 

4.4 Complexity Analysis 
In this section, the complexity of the proposed algorithms is discussed. Firstly, in 

Algorithm 3, the number of the subsets are needed to be considered increases exponentially 
with the problem dimension. Problem (20) approximately consist of tot2 1N +  variables and 1 
second-order cone constraint of dimension totN . Hence, In the worst case, we need to traverse 
all tot2 2N −  subsets and the worst-case complexity is given by ( )tot 1 2

tot2NO N+ . Secondly, the 
iteration times in Algorithm 3 is tot SMN N− , and the constraints in problem (21) consist of 

tot 1N +  variables and 1 second-order cone constraint of dimension totN  approximately. Thus, 
the complexity of Algorithm 3 can be given by ( )3

totO N . 

5. Numerical results 
In this section, we present numerical results to evaluate the performance of the proposed 

algorithms, where 2K = , 2RN = , 2SMN = , 410ε −=  and WattT SMP N= . Moreover, QPSK 
constellations are employed to modulate the source information bits.  

Firstly, we investigate the convergence behaviors of the branch and bound based algorithm 
in Algorithm 2 and the SCA algorithm in Algorithm 3 as depicted in Fig. 2 and Fig. 3, 
respectively. The parameters are set as tot 6N =  and SNR = 3dB. The results in Fig. 2 
corroborate the fact that the proposed branch and bound algorithm converges to its optimal 
value exactly. Note that in the first three iterations, the value of the lower bound is ∞, so it is 
not drawn in Fig. 2. Then, as the number of iterations increases, the upper bound decreases 
and the lower bound increases until convergence. Moreover, as shown in Fig. 3, we can see 
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that the SCA algorithm converges fast toward the optimal value illustrated by the dotted line 
therein. 

 
 

 

Fig. 2. Convergence behavior of Algorithm 2 giving tot 6N = , SNR = 3dB with QPSK. 

 
 

 

Fig. 3. Convergence behavior of SCA in Algorithm 3 giving tot 6N = , SNR = 3dB with QPSK. 
 
Next, we investigate the BER comparison versus the signal-to-noise-ratio (SNR) in Fig. 4 

and Fig. 5 with tot 4N =  or 6. As shown in Fig. 4 and Fig. 5, the branch and bound algorithm 
can achieve the best BER performance among all the algorithms since it can get the optimal 
solution, and the superiority becomes more pronounced as totN  increases. Moreover, the 
performance of the deflation SCA algorithm is close to the exhaustive search based algorithm 
while avoiding enumerating all the antenna combinations. Furthermore, the BER performance 
of these algorithms with tot 6N =  in Fig. 4 is better than that with tot 4N =  in Fig. 5. 
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Fig. 4. BER for SMS giving SM 2N =  with QPSK, tot 4N = . 

 
Fig. 5. BER for SMS giving SM 2N =  with QPSK, tot 4N = . 

6. Conclusion 
In this paper, the transmit antenna selection and multicast precoding problem has been 

treated in multicast based SMSs. To this end, an equivalent single-stage reformulation of the 
original problem has been proposed to leverage the tools of optimization to design antenna 
selection and precoding coefficients jointly and simultaneously. Then, two algorithms to solve 
the reformulated mixed-integer non-linear problem have been proposed, where a branch and 
bound based iterative algorithm that can achieve quasi-optimal solution, and a deflation SCA 
algorithm that achieves elegant performance with low-complexity. The outcomes of this study 
highlight the significance of our approaches in improving the performance of transmit antenna 
selection and multicast precoding in SMSs. Numerical results demonstrate the convergence 
and efficiency of the proposed schemes, the convergence of our proposed iterative algorithm 
is between 10 and 15 iterations. Moreover, when the iterative algorithm and the exhaustive 
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search based algorithm take the same BER accuracy conditions, the signal-to-noise-ratio (SNR) 
of the iterative algorithm is 1-2dB lower than the exhaustive search based algorithm. 
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