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Abstract 

 
Packet classification is a key technology of the Internet for routers to classify the arriving 
packets into different flows according to the predefined rulesets. Previous packet classification 
algorithms have mainly focused on search speed and memory usage, while overlooking update 
performance. In this paper, we propose PreCuts, which can drastically improve the update 
speed. According to the characteristics of IP field, we implement three heuristics to build a 
3-layer decision tree. In the first layer, we group the rules with the same highest byte of source 
and destination IP addresses. For the second layer, we cluster the rules which share the same IP 
prefix length. Finally, we use the heuristic of information entropy-based bit partition to choose 
some specific bits of IP prefix to split the ruleset into subsets. The heuristics of PreCuts will 
not introduce rule duplication and incremental update will not reduce the time and space 
performance. Using ClassBench, it is shown that compared with BRPS and EffiCuts, the 
proposed algorithm not only improves the time and space performance, but also greatly 
increases the update speed. 
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1. Introduction 

With the improvement of the Internet, people have higher requirements for network 
bandwidth, network security, and network latency. Therefore, Internet devices must be able to 
classify packets quickly so as to guarantee Quality of Service. Since packet classification is the 
key technology of Routers, Fire Walls and Network Intrusion Detection Systems (NIDS), its 
speed directly affects the overall performance of the Internet. 

Given a predefined ruleset, packet classification is to find out the best rule that matches the 
incoming packet. An excellent packet classification algorithm should have the following three 
features: fast search speed, small memory usage and easy to update. Because of the importance 
of packet classification, many researchers have carried out detailed studies. However, the early 
research mainly focuses on the search speed and memory usage, while ignoring the update 
performance. As a matter of fact, after a ruleset is defined, as the network environment 
changes, its rules change as well. A ruleset will increase or reduce its rules according to the 
real time network environment. It is vital for a packet classification algorithm to be able to 
adapt to the incremental update of a ruleset. Therefore, the current problem that packet 
classification algorithm needs to address is to meet the time, space and update performance at 
the same time. However, in the real life network, with the size and the complexity of the 
ruleset growing, the difficulty in designing a global optimal packet classification algorithm 
increases.  

In this paper, we propose PreCuts—a packet classification algorithm with excellent 
scalability and update speed. It achieves fast updates without reducing the time and space 
performance. Its update time is almost the same as a search time. After scrutinizing the 
characteristics of IP field, we put forward three heuristics to build a 3-layer decision tree, with 
each layer being constructed by one heuristic. The main contribution of this paper is as 
follows. 

• Prefix Index Cutting: we propose a ruleset partition method to group rules with the same 
highest byte of IP address. This method could partition the ruleset into 216 subsets at most, 
and with no overlap between every two subsets.  

• Prefix Length Cutting: after prefix index cutting, we partition rules with the same IP 
prefix length. This further reduces the space complexity of the subsets.  

• Bit Partition: we propose an information entropy-based bit partition method. First we 
choose several specific bits of IP prefix and then group the rules with the same bits. Bit 
Partition is the last step in processing the ruleset. It realizes the fine-grained partition of 
the ruleset. 

The rest of this paper is organized as follows. Section 2 briefly describes the background of 
packet classification. Section 3 shows the motivation of PreCuts. Section 4 illustrates the 
proposed algorithm. Section 5 summarizes the performance results, and the last section 
concludes this paper. 

2. Background 

2.1 Problem Statement 
Packet Classification is a process that classifies packets into flows according to the 

predefined ruleset. Table 1 illustrates a simplified example of a ruleset. Each rule r consists of 
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D fields and an action. Ruleset R is a set of rules. Let 1 2{ , , , , }Dr F F F act=  , and packet 
1 2{ , , }Dp f f f=  , then we call p matches r if i if F∈  for all 1, 2, ,i D=  . From a geometric 

point of view, the whole ruleset can be seen as a multidimensional space, each rule of the 
ruleset can be seen as a hypercube, and a packet is a point in the multidimensional space. If a 
packet matches a rule, the corresponding point will fall within the hypercube of the correct rule. 
Therefore, packet classification can be treated as a point location problem in computational 
geometry [1]. 

Table 1. Simplified Example of Ruleset 

Rule Field1 Field2 Field3 Field4 Field5 Act 
R1 0010 1010 [4,4] [3,3] TCP act0 
R2 0001 1000 [2,2] [2,3] UDP act1 
R3 0101 1100 [1,2] [3,3] TCP act2 
R4 0001 1010 [2,4] [2,3] UDP act1 
R5 1101 110* [1,2] [3,4] TCP act0 
R6 01** 111* [4,4] [1,2] TCP act1 
R7 100* 10** [3,3] [2,2] TCP act2 
R8 11** 0*** [2,3] [1,1] UDP act0 
R9 1*** 1*** [1,4] [1,2] UDP act0 
R10 **** **** [1,4] [1,4] ALL act2 

Previous packet classification research centers on how to use heuristics to find the optimal 
way to locate the point [2]. Nevertheless, the rulesets being studied are static; thus the 
algorithms are designed based on such static rulesets. As a result, when confronted with a 
ruleset which needs incremental update, their update speed is unsatisfactory. However, what 
the present-day internet needs is an algorithm which can not only meet the internet demands, 
but also achieve incremental update with few overhead. 

2.2 Packet Classification Algorithm 
The current packet classification algorithms can be divided into two categories: 

RAM-based algorithmic solutions and hardware-based TCAM solutions. RAM-based 
algorithmic solutions focus on building the best search structure, including the following 
algorithms. a) Dimensional decomposition-based algorithms [3-5]. They are fast in searching 
but inadequate in space performance. These algorithms build their search structure by 
encoding the entire ruleset. This renders them incompetent in incremental update. b) Decision 
tree-based algorithms [6-10]. They build the decision tree by recursively partitioning the rule 
space. The heuristics of cutting space inevitably introduce rule redundancy. As a result, when 
a new rule is being inserted into the ruleset, it may simultaneously fall into various child nodes. 
The more the rules being inserted, the worse the time and space performance. In the worst case, 
the search structure has to be rebuilt. 

Hardware-based TCAM solutions [11-15] are well known for their parallel search 
capability and constant processing speed. However, due to the limitation of TCAM’s native 
circuit structure, these solutions face two major problems, power consumption and range 
encoding. Current researches mainly focus on addressing the above two problems, while the 
problem of rule update is almost left unstudied. Since the circuit structure of TCAM renders 
inserting and deleting rules even more complex, incremental update can only be realized at the 
expense of extra resources. 
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2.3 Related work 
Previous researchers proposed many packet classification algorithms, but early algorithms 

[3], [7] only apply to small ruleset. HyperSplit proposed by Qi et al. [2] uses non-equal sized 
cuts for more efficient memory usage, but it still has rule duplication, and the depth of the 
decision tree is not satisfactory. BRPS proposed by Chang [18] uses a hierarchical list of 
sorted ranges and prefixes that allow the binary search to be performed on the list at each level 
to find the best matched rule, but there are still redundant rules in the search structure. Besides, 
when BRPS is faced with a huge amount of update tasks, unwanted data structure will reduce 
the time and storage performance. EffiCuts [8] is an improved algorithm over HyperCuts. It 
proposes four novel ideas: separable trees, selective tree merging, equi-dense cuts, and node 
co-location. Employing the same space-decomposition as HyperCuts, EffiCuts still does not 
fully solve the rule redundancy problem. Although EffiCuts can reduce the memory usage, its 
heuristics decide that it cannot achieve fast updates. Since incremental update causes more 
rule duplication, as the number of updated rules is increasing, the performance of EffiCuts will 
reduce. 

3. Motivation 
A packet classification algorithm which is easy to update should possess the following 

features: 
(1) Rule Completeness 

The number of different rules in the search structure should be equal to the number of the 
rules in the ruleset. The completeness of rules ensures that the newly inserted rule can easily 
find its position in the search structure according to the rule priority. 

(2) Rule Uniqueness 
Each different rule in the search structure should be unique. No rule redundancy is allowed. 

Take decision tree-based algorithm as an example, let each leaf node ruleset be 1 2, , , nR R R , it 
is common that 

1 2 nR R R R=                                                     (1) 
The uniqueness of rules requires that there is no overlap between any two leaf nodes, i.e.

,i j∀ , i jR R = ∅ . Consequently, the uniqueness of rules ensures that the newly inserted rule 
will not introduce other rule duplication, thus avoiding the performance decrease caused by 
incremental update. 

The heuristics of previous algorithms all fail to achieve these two features. Their heuristics 
use some certain points in a dimension to cut the rule space, and take these points as the basis 
to build the decision tree. When a rule needs to be updated, if one of these points is in the 
hypercube of this rule, this rule will be updated in more than two nodes. This will result in rule 
duplication. Accordingly, the more rules need to be updated the more redundant rules will be 
produced. This in turn will result in poorer performance. 

In order to guarantee the incremental update performance, our heuristics must possess the 
above two features. Based on a thorough analysis of the characteristics of the IP domains, we 
propose three heuristics, Prefix Index Cutting, Prefix Length Cutting, and Bit Partition. All of 
them promise Rule Uniqueness. Moreover, PreCuts does not remove any rule in the ruleset, 
and it keeps every rule in the search structure. Therefore, PreCuts also has the feature of Rule 
Completeness.  
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We use the three heuristics to cut rulesets step by step. Considering the fact that the highest 
byte of the low boundary of the IP address is unique, our first heuristic puts the rules with the 
same highest byte together. This ensures that there is no rule redundancy. Besides, it is 
common that the bits in the IP prefix are definite, i.e., each bit in a given IP prefix has only one 
value. When cutting the rulesets based on these definite bits, we can avoid the rule redundancy 
caused by the wildcards. However, if the rules have different IP prefix lengths, we cannot 
ensure that all the bits that we choose to cut the ruleset are not in the wildcards. So we 
introduce our second heuristic to group the rules with the same IP prefix length. In such groups, 
we employ the third heuristic which uses definite bits to partition the rules to a finer degree.  

To linearly search the least rules like other decision tree-based algorithms, PreCuts uses 
three heuristics to cut the rulesets layer by layer. In this way, PreCuts gradually narrows the 
scale of the ruleset. When the rules in a leaf node are no more than a given amount (e.g. no 
more than 8), we linearly search the rules to find the best matched rule. Our simulation profiles 
show that after the 3 layer cuttings, more than 98% of the leaf nodes have no more than 8 rules. 
In fact, although our first two heuristics can cut the ruleset into relatively small sub rulesets, 
some of them still have a large number of rules. To overcome this, we add the third heuristic to 
further reduce the number of the rules in the leaf nodes. However, if we introduce a fourth 
layer cutting, the pre-process will be more complex. This will reduce the space performance. 

 

R10 R1, R2, R4 R3, R6 R7, R9 R8… … … …
… … … …

Root node

…
…

R5

R1, R2, R4 R3 R6 R7 R9

R1 R2 R4 ∅

Layer-1

Layer-2

Layer-3
 

Fig. 1. Example of PreCuts 
 
According to Table 1, Fig. 1 depicts a toy example to show the flavor of our algorithm. In 

Layer-1, we group the rules with the same first two bits in the source and destination IP 
addresses. Since we use 4 bits to split the ruleset, the total number of the child nodes are 16 
(Not all child nodes are shown.). In Layer-2, we put the rules with the different IP prefix length 
in different groups. For example, the source IP prefix length of R3 is 4 and the destination IP 
prefix length of R3 is 4, while the source IP prefix length of R6 is 2 and the destination IP 
prefix length of R6 is 3. Therefore, R3 and R6 belong to different child nodes. In Layer-3, we 
choose certain bits in IP prefix to cut rulesets. For example, in {R1, R2, R4}, we choose two 
bits (i.e., the fourth bit of source IP address and the third bit of destination IP address) to cut 
the rules into three different leaf nodes. 

Combining the aforementioned elements, PreCuts is not only easy to understand, but also 
easy to evaluate. This simplicity makes it readily employable. Next, we will go into the details 
of PreCuts. 

4. The Proposed Algorithm 
PreCuts employs a 3-layer search structure. First, we use prefix index cutting to split the 

ruleset into subsets. Second, we use prefix length cutting to cluster rules with the same IP 
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prefix length. Last, we use bit partition to build the decision trees in each subset. Firstly, we 
introduce some relevant definitions. 

4.1 Relevant Definitions 
Table 2. Symbol Description 

Symbol Description 
( )BI r  Byte index of rule r  

( )BI R  Byte index of ruleset R  

AS  Accordance set 
( )PL r  Prefix length of rule r  

( )PL R  Prefix length of ruleset R  

Es  Split bit 
Vs  Split vector 

( , )SV r Vs  Split bit value of Vs  on rule r  

( , )E R Vs  Split entropy of Vs  on ruleset R  

 
Definition I Byte Index  
Let the source and destination IP addresses of a 5-tuple rule r be 1 2 3 4. . . / AS S S S M  and 

1 2 3 4. . . / DD D D D M , then the 2-dimension array 1 1( , )S D  constructed by the highest bytes of the IP 
field is the byte index of rule r, recorded as ( )BI r . If all the rules in ruleset R have the same 
byte index, then the byte index of R exists, recorded as ( )BI R . 

Definition II Accordance Set  
The set formed by the rulesets which have byte index is named accordance set, recorded as 

AS.  
Definition III Prefix Length Coordinate 
Let the length of source and destination IP addresses of r be AM  and DM , then the prefix 

length coordinate of r is ( ) ( , )A DPL r M M= . If all the rules in R have the same prefix length 
coordinate, the prefix length coordinate of R exists, recorded as ( )PL R . 

Definition IV Split Bit 
In the IP field, the bit which can divide the ruleset into 2 subsets with different bit values is 

named split bit, recorded as Es .  
Definition V Split Vector 
The bit vector which contains n Es and can divide the ruleset into 2n subsets is named split 

vectorVs . Its total length is 64 bits. 
Definition VI Split Value 
Let the 64 bit vector formed by the source and destination IP addresses of rule r be Vr, then 

the bit string formed through merging the split bit value with Vs is named the split value of r, 
recorded as ( , ) ( )SV r Vs bitMerge Vr Vs= ∧ , and the number of the possible values is 2n . If all the 
rules in ruleset R have the same split value, then, the split value of R exists, recorded as

( , ) ( )SV r Vs bitMerge Vr Vs= ∧ .  
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Definition VII Split Proportion 
( , ) | | | |i i VsP R Vs R R=                                                      (2) 

where, { | ( , ) , }i i VsR r S r Vs V r R= = ∈ , iV is the constant vector, ( , )i iSV R Vs V= , | |iR is the number 
of the rules whose split value is iV , and | |VsR represents the total number of the rules. 

Definition VIII Split Entropy 

                                      
(3)

 
Split entropy reflects the balance degree of subsets split by Vs. 

4.2 Prefix Index Cutting 
The basic idea of prefix index cutting is to cluster rules with the same byte index, i.e.  

                                                 (4) 
where, is the subset after clustering, S and D are two constants, and R is the original ruleset. 

When making prefix index cutting, we first extract the byte index of the rules, and then put 
the rules with the same prefix index into one group. Fig. 2 shows the pseudo code of prefix 
index cutting. In the pseudo code, the input is R, and the output is the prefix index set  
and the subsets RA. 

 
Algorithm 1 Prefix Index Cutting 
Input: R   
Output: ,BIset RA  

1: //init 
2: { }BIset = ∅  
3: for r R∈  do 
4:    if ( )BI r BIset∉  then 
5:       add ( )BI r  to BIset   
6:    end if 
7: end for 
8: for ib BIset∈  do 
9:    for r R∈  do 

10:       if ( ) iBI r b=  then 
11:         add r  to [ ]RA i   
12:       end if 
13:    end for 
14: end for 
15: return ,BIset RA   
Fig. 2. Pseudo code of Prefix Index Cutting 

 
According to Theory I, prefix index cutting will not introduce rule duplication. Therefore, 

when updating rules, it is impossible for one rule to fall into more than two nodes, so as to 
avoid new rule redundancy. 

Byte index is decided by the highest byte of IP address. The max number of the possible 
values of a given ( )BI r is 216. As a result, in the worst case, we will obtain 216 byte index groups. 
However, through simulation, it is found that, in the actual ruleset, the number of different 
byte indexes is far less than the theoretical boundary. But in order to guarantee the update and 
time performance, we retain every possible byte index pointer in the search structure. 

2 1

0
( , ) ( , ) log ( , )

n

i i
i

E R Vs P R Vs P R Vs
−

=

= − ×∑

' { | ( ) ( , ), }R r BI r S D r R= = ∈

'R

BIset
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Consequently, even in the worst case, PreCuts still have enough byte index pointers to ensure 
that each byte index group has a corresponding node. Moreover, no matter how many byte 
index groups there are, PreCuts can still find the byte index group that the packet belongs to in 
one memory read. 

There are not 216 byte index groups in one ruleset. If the corresponding byte index group is 
not empty, then the pointer will directly point to the group. In contrast, if the group is empty, 
the pointer is set to 0. Saving every possible pointer will slightly increase the space complexity, 
but the algorithm can locate the corresponding pointer straight away according to the byte 
index of the packet. In this way, only one memory read is required to find the byte index group 
to which the packet belongs. 

The search algorithm of byte index is as follows: let the pointers be numbered in the 
ascending order and let the head of the incoming packet be head, then we get 

( ) ( , )BI head S D= , and the number of the pointer which the packet corresponds to is 
( ) 2nBIn head S D= × +  (n is the width of S). According to BIn(head), the search algorithm spots 

the pointer, and jumps to the next node to continue the search. Fig. 3 is the prefix index cutting 
tree of Table 1. It is built by the first two bits of IP addresses. Let the IP address of head be
100*,10** , ( ) (10,10)BI head = , then the corresponding number of the node is

2( ) 2 2 2 10BIn head = × + = . 

#Node0
R10

#Node2
R1, R2, R4

#Node7
R3, R6

#Node10
R7, R9

#Node12
R8

… … … …

… … … …

PI = (00,00)
16 Nodes

#Root

…

…

BIn(head) = 10

PI = (00,10) PI = (01,11) PI = (10,10) PI = (11,00)

#Node15
R5

PI = (11,11)

 
Fig. 3. Example of Prefix Index Cutting 

 
Theory I There is no rule overlap in any two rulesets which have different byte indexes.  
Proof: ,X Y AS∀ ∈ and ( ) ( )BI X BI Y≠ , in X andY , Xr X∀ ∈ , Yr Y∀ ∈ , from ( ) ( )BI X BI Y≠ , 

we get , thus Xr  and Yr have different IP addresses, then X Yr r≠ . This means 
there is no rule overlap in X and Y. 

4.3 Prefix Length Cutting 
The basic idea of prefix length cutting is to put the rules which have the same prefix length 

coordinate into one group, i.e. 
' { | ( ) ( , ), }R r PL r M N r R= = ∈                                           (5) 

where 'R  represents the subset, M and N are two constants. 
Similar to prefix index cutting, when performing prefix length cutting, we first calculate 

the prefix length coordinate of the rules, and then put the rules which have the same coordinate 
into one group (called PL Group). Fig. 4 shows the pseudo code of prefix length cutting. In the 
pseudo code, the input is R, and the output is the prefix length set PLset and the subsets RL. 

According to Theory II, prefix index cutting will not bring rule duplication. 

( ) ( )X YBI r BI r≠
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There are two conditions in searching the prefix length nodes, namely, packet lookup and 
rule lookup. 

(1) Packet Prefix Length Lookup 
Since there is no mask information in the packet head, we cannot find the match rule using 

the mask information. To solve this problem, we find the child node that the packet 
corresponds to through judging whether the packet IP address is within the IP range of the 
node. In this way, a packet may belong to more than one child node, but when performing 
prefix length cutting, the rules are put into the subsets according to their priority. The first 
match rule is the optimal rule. Let the incoming packet head be head . Taking Node10 in Fig. 3 
as an example, the packet prefix length lookup is shown in Fig. 5. Let the IP address of the 
packet be ( ) (8,9)IP head = , and we obtain ( ) ( 2)IP head IPRange Child∈ , then the packet 
corresponds to #Child2.  

 
Algorithm 2 Prefix Length Cutting 
Input: R   
Output: ,PLset RL  

1: //init 
2: { }PLset = ∅  
3: for r R∈  do 
4:    if ( )PL r PLset∉  then 
5:       add ( )PL r  to PLset   
6:    end if 
7: end for 
8: for il PLset∈  do 
9:    for r R∈  do 

10:       if ( ) iPL r l=  then 
11:         add r  to [ ]RL i   
12:       end if 
13:    end for 
14: end for 
15: return ,PLset RL   
Fig. 4. Pseudo code of Prefix Length Cutting 

 
To get the longest prefix match, we only need to search the corresponding prefix length 

nodes in a reversed order. For example, in Fig. 5, firstly, we determine whether IP(head) 
belongs to IPRange(Child2), if yes, then we continue searching Child2; if no, then we will turn 
to search Child1. For PreCuts, the rules in the left node have shorter prefix than those in the 
right. Therefore, the rule found through the above method is the longest match rule.  

 

#Node10
R7, R9

#Child1
R7

#Child2
R9

IPRange = 
{[8,9],[8,11]}

IP(head) =  (8,12)

IPRange = 
{[8,15],[8,15]}  

Fig. 5. Packet Prefix Length Lookup 
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(2) Rule Prefix Length Lookup 
As is shown in Fig. 6, let the update rule be r, and compare ( )PL r  with the prefix length 

coordinate in PLset , then we get that r belongs to Child2. 
Theory II There is no rule overlap in any two rulesets which have different prefix length 

coordinates. 
Proof: Take two arbitrary ruleset X and Y , and . In and Y , Xr X∀ ∈ ,

Yr Y∀ ∈ . From ( ) ( )PL X PL Y≠ , we get , thus X Yr r≠ . This means there is no rule 
overlap in andY . 

#Node10
R7, R9

#Child1
R7

#Child2
R9

PLset = {(3,2), (1,1)}

PLset = {(3,2)} PLset = {(1,1)}

PL(r) =  (1,1)

 
Fig. 6. Rule Prefix Length Lookup 

4.4 Bit Partition 
The basic idea of bit partition is to choose the split vector with the largest split entropy as 

the partition standard, and then divide the ruleset into several subsets with no overlaps. The 
process is as follows. 

We first calculate the partition entropy of every possible partition vector, and choose the 
partition vector MVs which has the largest entropy as the final partition vector. 

max ( , )M ii
Vs E R Vs=

                                              
  (6) 

According to , we obtain the partition value of each rule in the ruleset, and then put the 
rules with the same partition value into one group. The pseudo code of prefix bit partition is 
shown in Fig. 7. In the pseudo code, the input is the ruleset R, and the output is the final 
partition vector and the subsets RB. 

Algorithm 3 Bit Partition 
Input: R   
Output: ,MVs RB  

1: //init 
2: 0 { }, ' 0V Any Possible Vector c= =  
3: for 0v V∈  do 
4:    if ' ( , )c C R v<  then 
5:       ' ( , )c C R v←   
6:       MVs v←   
7:    end if 
8: end for 
9: for  do 

10:    add  to   
11: end for 
12: return   

Fig. 7. Pseudo code of Bit Partition 

( ) ( )PL X PL Y≠ X
( ) ( )X YPL r PL r≠

X

MVs

MVs

r R∈
r [ ( , )]MRB SV r Vs

,MVs RB
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According to Theory III, prefix bit partition will not bring rule duplication. 
In PreCuts, all the possible split value pointers are retained in the search structure. If the 

next node has no rules, the value of the pointer is 0. There are two reasons to retain all the 
nodes pointers. 

(1) To improve the search speed.  
We do not have to compare every split value of the current node to determine the child 

node that corresponds to the packet. We can locate the corresponding child node right from the 
split value of the packet head. This reduces the comparisons that the lookup needs.  

(2) To improve the update performance.  
Since the pointers of all the possible child nodes exist, in update, we do not need to add 

node pointers for new rules, but only need to modify the existing pointers. This reduces the 
update complexity. 

Fig. 8 shows the bit tree built according to #Node2 in Fig. 3, which selects two split bits 
and has four leaf nodes. 
 

 
Fig. 8. Example of Bit Tree 

 
From Definition V, it is shown that the more split bits that are chosen, the better the 

partition result. This is because the increase of the number of the split bits can reduce the depth 
of the decision tree and promote the time performance. Choosing too many partition bits will 
greatly increase the pre-processing complexity. For example, to choose 8 split bits from IP 
addresses, the possible cases are 94.43 10× . Traversing all the values will bring a great deal of 
calculation. Therefore, we make some optimizations to prefix bit partition, as is shown in the 
following. 

(1) Restrict the max number of the split bits.  
[16] shows that, the prefix length of IP addresses is mainly less than 9 or larger than 12. 

According to this, we set the max number of split bits as 4, so as to enable the partition bit to 
achieve satisfactory partition in all cases.  

(2) Restrict the select range of the split bits.  
In a byte index group, the byte indexes of all the rules are the same. Therefore, it is useless 

to choose the split bit in the highest byte of the IP address. Additionally, if the split bit is 
chosen in the wildcards, rule duplication will be introduced. Given these two aspects, we 
select the split bits within the IP prefix except for the highest byte. The maximum number of 
candidate values is 48. 

 
 

#Node2
R1, R2, R4

IPRange = 
{[1,9],[8,14]}

#Child1
R1

#Child2
R2

#Child3
R4

SV = 01 SV = 10 SV = 11

#Child0
Empty

SV = 00

#PLNode0
R1, R2, R4

PL = (4,4)
Vs = 00010010
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Fig. 9. Bit Lookup 

 
We use the method in [17] to complete the lookup in bit tree, as is shown in Fig. 9. Let the 

IP address of head be 1101, 0010, then we get , the node that 
packet corresponds to is Child3. The way of update rule lookup is the same as the packet 
lookup. 

Theory III Bit partition will not bring rule duplication.  
Proof: Given that we choose the split bit within the IP prefix, since there is no wildcard in 

IP prefix, the bit of any rules in IP prefix has set values: ‘0’ and ‘1’. Therefore, each rule has a 
set split value and one rule can only belong to one child node. In this way, rule duplication can 
be avoided. 

 

4.5 Lookup and Update 

4.5.1 Lookup Algorithm 
According to the search structure of PreCuts, let the packet header be head, the lookup 

algorithm is as follows. 
Step1 Jump to the byte index node that corresponds to;  
Step2 Jump to the prefix length node that corresponds to;  
Step3 If the current node is leaf node, perform Step4; if the node is not a leaf node, 

according to Vs in the current node, jump to the child node that  corresponds to, 
then perform Step3.  

Step4 Perform a linear search to find the match rule.  
 
Fig. 10 illustrates the pseudo code of lookup algorithm. 
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Algorithm 4 Search Algorithm 
Input:  
Output:  

1:  
2: if 0currNode ≠  then 
3:    for childNode currNode∈  do 
4:       if ( ) ( )IP head IPRange childNode∈  then 
5:          currNode childNode←  
6:          break 
7:       end if 
8:    end for 
9:    return FAILURE 

10: else 
11:    return FAILURE 
12: end if 
13: while 0currNode ≠  do 
14:    if currNode LeafNode=  then 
15:       ( . )matchRule linerSearch currNode ruleList←  
16:       return matchRule   
17:    end if 
18:    . ( ( , ))currNode currNode childNode s head Vs←  
19: end while 
20: return FAILURE 

Fig. 10. Pseudo code of Packet Lookup 
 
According to the data structure of PreCuts, we analyze the search complexity of each layer. 

In Layer-1, PreCuts retains all the possible BI pointers. So, we only need one search to 
pinpoint the next node. Thus, the search complexity of this layer is O(1). In Layer-2, we need 
to linearly search every IPRange. Let the number of the IPRange be P, then the search 
complexity is O(P). In Layer-3, for each bit tree node, PreCuts can also fix the next node 
through only one search, and finally perform a linear search in the leaf nodes. Let the depth of 
the decision tree be d, the number of rules in the leaf node is N, then the search complexity is 
O(d+N). In all, the search complexity of PreCuts is O(d+P+N). However, since d is relatively 
small, the search complexity is O(P+N). Table 3 compares the time complexity of PreCuts 
with BRPS and EffiCuts.  

 
Table 3. Complexity of BRPS, EffiCuts and PreCuts. M is the total number of rules, d is the number 

of dimension, N is the number of rules in leaf node 
Scheme Time Complexity 
BRPS O(dlogM) 

EffiCuts O(H+N) 
PreCuts O(P+N) 

 
The analysis of the time complexity of PreCuts shows that its time performance mainly 

depends on the number of PL Groups (in a node) and the number of rules in the leaf node 
because PreCuts has to perform a linear search in these two parts, so their size will affect the 

,head rootNode
matchRule

. ( ( ))currNode rootNode childNode An head←
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time performance. In the worst case (Max Number), the numbers of these two parameters are 
relatively high, but the average number is far smaller than that in the worst case. Therefore, the 
average time performance is still good. When performing the search algorithms, if a node 
needs a large amount of linear search, a separate thread can be added to finish it. In this way, 
the impact of the worst case on the time performance of PreCuts can be avoided. 

4.5.2 Update 
 

Algorithm 5 Find Rule Node Algorithm 

Input: ,r rootNode  
Output: updateNode  

1: Node lastNode   
2: . ( ( ))currNode rootNode childNode An r←  
3: if 0currNode =  then 
4:    updateNode rootNode←   
5:    return updateNode  
6: end if 
7: lastNode currNode←   
8: for  do 
9:    if  then 

10:       . [ ]currNode currNode child l←   
11:       break 
12:    end if 
13: end for 
14: if 0currNode =  or currNode lastNode=  then 
15:    updateNode lastNode←   
16:    return  
17: end if 
18: while 0currNode ≠  do 
19:    if currNode LeafNode=  then 
20:        
21:       return  
22:    end if 
23:    lastNode currNode←  
24:     
25: end while 
26: return lastNode   

Fig. 11. Pseudo code of Finding Rule Node 
 
There are two kinds of rule update, namely, reconstruction and incrementation. 

Reconstruction update means reconstructing the search structure based on a complete ruleset. 
When the current search structure cannot meet the actual demand of the Internet, 
reconstruction update will be used. While incrementation update means adding or deleting 
some rules in the current search structure. When a ruleset needs to add or delete some rules, 
incrementation update will be used. Incrementation update will not significantly change the 
current search structure, but just add or delete a certain amount of rules in the search structure. 

.l currNode Lset∈
( )L r l=

updateNode

updateNode currNode←
updateNode

. ( ( , ))currNode currNode childNode S r Vs←
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We have already discussed the reconstruction update of PreCuts. Here, we only focus on 
the incremental update. Let the rule waiting to be inserted (or deleted) be r, then we find out 
the node to which r belongs. Next, we perform the function of ( , )addRule r updateNode  and 

( , )deleteRule r updateNode  to insert and delete rules, respectively. Fig. 11 illustrates the pseudo 
code of finding rule node. 

The search method of update algorithm in Layer-1 and Layer-3 is the same as the search 
algorithm. So is their complexity. In Layer-2, through linearly searching the PL values within 
the current node, the update algorithm spots the next node corresponding to the new rule. Let 
the number of PL values be L, then the update complexity is O(L). Therefore, the update 
complexity of PreCuts is O(L+N). As can be seen in Table 4, the update complexity of BRPS 
and EffiCuts is the same, and is higher than PreCuts because with similar update method and 
lookup method, PreCuts only needs relatively low overhead to complete the update. 

 
Table 4. Update Complexity of BRPS, EffiCuts and PreCuts 

Scheme Update Complexity 
BRPS O(dM) 

EffiCuts O(dM) 
PreCuts O(L+N) 

 
PreCuts has a very simple search structure, in which packet lookup and rule update are 

implemented using similar ways. That is, the overhead of one packet lookup and one rule 
update is almost the same, which ensures a fairly fast update speed of PreCuts. It is worth 
noting that the search structure of PreCuts does not introduce redundant rules in updating, and 
consequently PreCuts achieves fast rule update. 

5. Performance Evaluation 
In this section, we evaluate the performance of PreCuts and compare it with other packet 

classification schemes in terms of memory usage, search speed and update speed. In this paper, 
we use ClassBench [16] to generate classifiers representative of the real ones, with the scales 
of ruleset ranging from 1,000 to 1,000,000. Being widely used in the research of packet 
classification, ClassBench mainly includes three types of rules: ACL (Access Control List), 
FW (Fire Wall) and IPC (Linux IP Chains). For example, FW1-1K is 1,000 Fire Wall security 
scheme rules. All the rules are 5-dimensional. They contain 32-bit source/destination IP 
addresses, 16-bit source/destination port numbers and 8-bit transport layer protocol. The 
implementation platform is an Ubuntu 10.04 system running on an Intel Core-i3 2350m and 2 
GB of main memory. 

We implemented BRPS and EffiCuts with all optimizations used in [18] and [8], 
respectively. The bucketsize of EffiCuts is 8 while other parameters use their default values in 
[8]. 
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5.1 Details of PreCuts 
 

Table 5. Details of PreCuts 

Ruleset 
ACL FW IPC 

1k 5k 10k 50k 100k 1k 5k 10k 50k 100k 1k 5k 10k 50k 100k 
BI Group 

Number 
56 192 703 1287 1300 62 989 1229 1131 864 132 175 431 2633 2871 

PL Group 
Number 

191 660 2073 9427 11611 153 1566 2411 8635 9551 592 1886 4037 31310 51945 

Leaf Node 
Number 

493 2135 6838 49882 99744 317 3974 9237 47939 93970 843 3290 6992 49876 99684 

Tree Depth 
(wst) 

5 5 4 5 5 4 4 4 4 5 4 4 4 4 4 

Tree Depth 
(avg) 

2.97 3.12 3.17 3.42 3.76 2.90 2.78 3.21 3.49 3.68 2.47 2.64 2.63 2.56 2.74 

 
Table 5 illustrates the details of PreCuts, displaying 5 characteristics of the PreCuts 

decision tree. 
• BI Group Number: BI Group Number counts the child nodes in the first of the 3 layers of 

the PreCuts search structure. The larger the scale of the ruleset, the more child nodes the 
first level contains. The biggest BI Group Number (ipc100k) is 2871, which is far less 
than the theoretical boundary. 

• PL Group Number: We cluster the rules with the same prefix length coordinate in every BI 
group. PL Group Number counts the child nodes in the second level of the PreCuts search 
structure. As can be seen from Table 5, after Byte Index Grouping, to some extent, the PL 
Group Number increases.  

• Leaf Node Number: This number counts the total leaf nodes of PreCuts. The number of 
the leaf nodes increases as the size of the ruleset expands. The larger the ruleset, the closer 
the leaf node number gets to the number of the rules in the ruleset. This shows that 
PreCuts has better adaptability for large sets; the larger the ruleset, the better the decision 
method that PreCuts uses to partition the ruleset.  

• Tree Depth: Tree depth is an important index to evaluate the performance of the decision 
tree-based algorithms, and it directly relates to the time performance. As can be seen from 
Table 5, including the first two levels of the search structure, the total tree depth of the 
decision tree is less than 5, and the worst average tree depth is just 3.76 (acl100k). Since 
the first two levels invariably employ two layers to describe, the final decision tree depth 
depends on the bit tree depth. According to the description in Section IV, a PreCuts 
decision tree with 5 tree depth can partition the ruleset into subsets, and this number is far 
greater than the number of rules in the largest ruleset.  

5.2 Memory Usage 
In this part we compare the memory usage of BRPS, EffiCuts and PreCuts. In order to 

ensure good time performance, PreCuts retains all the prefix index pointers and the child node 
pointers of the bit tree. This inevitably brings some redundant pointers to the decision tree 
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structure. These redundancies will reduce as the size of the ruleset grows, for the redundant 
pointers will be filled up by more rules. 

Fig. 12 compares the memory usage of BRPS, EffiCuts and PreCuts. From the figure we 
can see that, for relatively small ruleset (less than 10k), PreCuts has similar memory usage as 
BRPS and EffiCuts, while for a larger ruleset (100k), the average memory usage of PreCuts is 
27.0% less than BRPS and 33.5% less than EffiCuts. Moreover, as a whole, the average 
memory usage of PreCuts is 24.1% less than BRPS and 38.5% less than EffiCuts. 

 

 
 (a) ACL 

 
(b) FW 

 
(c) IPC 

Fig. 12. Memory Usage 

5.3 Search Speed 
In this part, we compare the time performance of BRPS, EffiCuts and PreCuts. We realize 

the three algorithms in simulation, and use the clock counter of CPU to measure the clocks that 
the three algorithms need in searching. Fig. 13 compares the search cycles of the three 
algorithms when dealing with different rulesets. The trace file used in the test is randomly 
generated by ClassBench [16]. From the simulation results, compared to EffiCuts, it is obvious 
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that PreCuts makes a great improvement, its search cycles have reduced by 84.9% on average. 
Compared to BRPS, its search cycles have reduced by 21.9% on average. When processing 
ACL and IPC rulesets, BRPS and PreCuts have similar search performance, whereas, when 
processing FW rulesets, PreCuts is better. 

The performance of PreCuts is much superior than EffiCuts in that the two algorithms 
adopt different data structures. The multi-decision tree search structure of EffiCuts makes it 
mandatory for the search algorithm to traverse each and every decision tree before obtaining 
the best match rule. This greatly raises the search cycles. For PreCuts, it is a different story. It 
only has to traverse one decision tree to get the best match rule. Consequently, the search 
cycles of EffiCuts are several times as many as those of PreCuts.  

 

 
 (a) ACL 

 
(b) FW 

 
(c) IPC 

Fig. 13. Search Cycles 
 
BRPS has the similar performance with PreCuts thanks to its huge amount of completed 

optimized heuristics. However, in practice, these optimized heuristics are hardly realizable. 
On the contrary, PreCuts is comparable with or even surpasses BRPS in time performance 
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without any extra optimization. This simplicity of PreCuts ensures its easy realization. With 
the same time performance but easier realization, PreCuts is superior to BRPS. 

 

5.4 Update Speed 
We adapt the method in [18] to test the update performance. First, we randomly extract 10% 

of the rules from the ruleset and build the search structure according to the remaining 90% of 
the rules. Then we randomly insert the extracted rules into the search structure to obtain the 
insertion cycles. After that, we randomly select another 10% of rules from the classifier and 
delete them from the search structure to obtain the deletion cycles. The average of the insertion 
and deletion cycles is obtained to judge the update performance. Since EffiCuts has no specific 
algorithms for incremental update, we only compare the update performance of BRPS and 
PreCuts, as is shown in Fig. 14. The average number of cycles that PreCuts needs in an update 
is 95% less than BRPS. 

 

 

 
Fig. 14. Update Cycles 

 
It can also be seen from Fig. 14 that, compared to BRPS, the number of the cycles that the 

incremental update of PreCuts needs will not increase significantly as the ruleset gets larger. 
This is mainly because the average depth of the decision tree of PreCuts does not grow as the 
ruleset gets larger. This almost keeps the number of the nodes traversed unchanged when 
PreCuts makes incremental updates to rulesets of various sizes. Consequently, PreCuts can 
sustain an excellent performance in making incremental updates to larger rulesets. 

6. Conclusion 
Previous packet classification algorithms mainly focus on time and space performance; 

however, the update performance is often overlooked. In this paper, we propose PreCuts 
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which achieves fast updates. To improve the update speed without reducing the time and space 
performance, we design a novel 3-layer search structure. Considering the characteristics of the 
IP field of the rules, the ruleset partition on the three levels is carried out using three different 
ways, namely, Byte Index Cutting, Prefix Length Cutting and Bit Partition. The experimental 
results show that our scheme outperforms other schemes not only in terms of classification 
speed and memory usage but also in terms of update speed. 
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