특징 추출 알고리즘은 영상 내에서 중요한 특징을 추출하기 위해 실시간 영상 처리 응용 분야에서 활용된다. 특히, 특징 추출 알고리즘은 추적 및 식별의 목적으로 다양한 영상처리 알고리즘에 특징 정보를 제공하기 위해서 활용되며, 주로 영상처리 전처리 단계에서 구현되고 있다. 광범위한 응용 분야에 이용되는 특징 추출 알고리즘의 처리 속도를 높인다면 혼합되어 사용될 다른 알고리즘 처리 소요 시간의 여유를 확보 할 수 있을 뿐만 아니라, 특징 추출 알고리즘이 적용된 영상 처리 응용 분야의 실시간 요건을 만족시키기 용이하기 때문에 중요하다. 본 논문에서는 특징 추출 기법을 고속으로 처리하기 위해 FPGA 기반의 하드웨어 가속기를 제안한다. 하드웨어 가속기 구현에 사용된 E. Rosten의 Feature from Accelerated Segment Test 알고리즘과 디지털 로직으로 구현한 하드웨어 가속기의 구조와 동작 절차에 대해 기술하였다. 설계한 하드웨어 가속기는 ModelSim을 이용해 동작 및 성능을 검증하였고, Xilinx Vertex IV FPGA 기반으로 로직을 합성해 구현 비용을 계산하였다. 제안한 하드웨어 가속기를 구현하기 위해 2,217개의 Flip Flop, 5,034개의 LUT, 2,833개의 Slice, 그리고 18개의 Block RAM을 사용하였으며, $640{\times}480$ 크기의 영상으로부터 954개의 특징을 추출하는데 3.06 ms의 시간이 소요되어 기존의 결과보다 구현 비용 면에서의 우월함이 확인되었다.