Han, Dong-Il;Choi, Jong-Ho;Yoo, Seong-Joon;Oh, Se-Chang;Cho, Jae-Il
116
본 논문에서는 기존의 방법에 비해서 사용되는 메모리의 증가가 없이, 혹은 메모리의 증가를 최소화하는 영상 메모리의 회전 변환 기법을 개발하여 얼굴 회전 변화에 강인한 고성능 실시간 얼굴 검출 엔진 구조를 제안하였으며 FPGA 구현을 통하여 제안 구조의 타당성을 검증하였다. 고성능 얼굴 검출을 위해 기존에 사용하던 조명 변화에 강인한 MCT(Modified Census Transform) 변환 기법과 최적화된 학습데이터 생성을 위한 Adaboost 학습 기법 이외에 얼굴 회전 변환에 강인함을 위한 영상 회전 기법을 이용하였다. 제안한 하드웨어 구조는 색좌표 변환부, 잡음 제거부, 메모리 인터페이스부, 영상 회전부, 크기 조정부, MCT 생성부, 얼굴 후보 검출부/ 신뢰도 비교부, 좌표 재조정부, 데이터 검증부, 검출 결과 표시부/컬러 기반 검출 결과 표시부로 구성되어있다. 구현 및 검증을 위해 Virtex5 LX330 FPGA 보드와 QVGA급 CMOS 카메라, LCD Display를 이용하였으며, 다양한 실생활 환경 및 얼굴 검출 표준 데이터베이스에 대해서 뛰어난 성능을 나타냄을 검증하였다. 결과적으로 실생활 환경에서 초당 60프레임 이상의 속도로 실시간 처리가 가능하며, 조명 변화 및 얼굴 회전 변화에 강인하고, 동시에 32개의 다양한 크기의 얼굴 검출이 가능한 고성능 실시간 얼굴 검출 엔진을 개발하였다.