Object Detection and Classification Using Extended Descriptors for Video Surveillance Applications

비디오 감시 응용에서 확장된 기술자를 이용한 물체 검출과 분류

  • Islam, Mohammad Khairul (Dept. Information & Telecommunication Eng., Korea Aerospace University) ;
  • Jahan, Farah (Dept. Information & Telecommunication Eng., Korea Aerospace University) ;
  • Min, Jae-Hong (Dept. Information & Telecommunication Eng., Korea Aerospace University) ;
  • Baek, Joong-Hwan (Dept. Information & Telecommunication Eng., Korea Aerospace University)
  • Received : 2010.12.17
  • Accepted : 2011.05.09
  • Published : 2011.07.25

Abstract

In this paper, we propose an efficient object detection and classification algorithm for video surveillance applications. Previous researches mainly concentrated either on object detection or classification using particular type of feature e.g., Scale Invariant Feature Transform (SIFT) or Speeded Up Robust Feature (SURF) etc. In this paper we propose an algorithm that mutually performs object detection and classification. We combinedly use heterogeneous types of features such as texture and color distribution from local patches to increase object detection and classification rates. We perform object detection using spatial clustering on interest points, and use Bag of Words model and Naive Bayes classifier respectively for image representation and classification. Experimental results show that our combined feature is better than the individual local descriptor in object classification rate.

본 논문은 비디오 감시 장치에 사용되는 효율적인 물체 검출 및 분류 알고리즘을 제안한다. 이전 연구는 주로 Scale Invariant Feature Transform (SIFT)나 Speeded Up Robust Feature (SURF)와 같은 특정 형태의 특징을 이용해 물체를 검출하거나 분류하였다. 본 논문에서는 물체 검출 및 분류에 상호 작용하는 알고리즘을 제안한다. 이는 로컬 패치들로부터 얻어지는 텍스쳐나 컬러 분포 같은 서로 다른 특성을 갖는 특징값을 이용해 물체의 검출 및 분류율을 높인다. 물체 검출에는 특징점들의 공간적인 클러스터링을, 이미지 표현이나 분류에는 Bag of Words 모델과 Naive Bayes 분류기를 사용한다. 실험을 통해 제안한 기법이 로컬 기술자를 사용한 물체 분류기법보다 우수한 성능을 나타냄을 보인다.

Keywords

References

  1. S. Belongie, J. Malik, and J. Puzicha, "Shape Matching and Object Recognition Using Shape Context," IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 509-522, April 2002. https://doi.org/10.1109/34.993558
  2. S. Ullman, "High-level vision: Object recognition and visual recognition", MIT Press, 1996.
  3. D. Comaniciu, V. Ramesh, and P. Meer, "Real-time tracking of non-rigid objects using mean shift", IEEE Conference on Computer Vision and Pattern Recognition, pp. 142-149, Hilton Head, SC, 2000.
  4. T. Leung, and J. Malik, "Representing and recognizing the visual appearance of materials using three-dimensional textons", International Journal of Computer Vision, vol. 43, pp. 29-44, 2001. https://doi.org/10.1023/A:1011126920638
  5. M. Varma, and A. Zisserman, "Statistical approaches to material classification", in Proc. of European Conf. on Computer Vision, pp. 167-172, Copenhagen, Denmark, 2002.
  6. B. Georgescu, and P. Meer, "Point matching under large image deformations and illumination changes", IEEE Transaction on Pattern Analyses and Machine Intelligence, vol. 26, no. 6, pp. 674-688, 2004. https://doi.org/10.1109/TPAMI.2004.2
  7. A. Rosenfeld, and G. Vanderburg, "Coarse-fine template matching", IEEE Transaction on Systems, Man and Cybernetics, vol. 7, pp. 104-107, 1977. https://doi.org/10.1109/TSMC.1977.4309663
  8. R. Brunelli, and T. Poggio, "Face recognition: Features versus templates", IEEE Transaction on Pattern Analyses and Machine Intelligence, pp. vol. 15, no. 10, pp. 1042-1052, October 1993. https://doi.org/10.1109/34.254061
  9. R. Maree, P. Geurts, J. Piater, and L. Wehenkel, "Random subwindows for robust image classification", IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA. vol. 1, pp. 34-40, June 2005.
  10. M. Brown and D.G. Lowe, "Invariant features from interest point groups", British Machine Vision Conference, pp. 656-665, 2002.
  11. D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, vol. 60, pp. 91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  12. T. Lindeberg, "Feature detection with automatic scale selection," International Journal of Computer Vision, vol. 30, no. 2, pp. 79-116, 1998. https://doi.org/10.1023/A:1008045108935
  13. J. Sivic and A. Zisserman, "Video google: A text retrieval approach to object matching in videos," IEEE International Conference on Computer Vision, pp. 1470-1477, Oct. 2003.
  14. D. Nistier and H. Stewenius, "Scalable recognition with a vocabulary tree," IEEE Computer Vision and Pattern Recognition, pp. 2161-2168, June 2006.
  15. P. Domingos, and M. Pazzani, "On the optimality of the simple Bayesian classifier under zero-one loss", Journal of Machine Learning, vol. 29, pp. 103-130, 1997. https://doi.org/10.1023/A:1007413511361
  16. P. Cheeseman, and J. Stutz, "Bayesian classification (AutoClass): Theory and results", International conf. on knowledge discovery and data mining, pp. 153-180, Portland, Oregon, Canada, August 1996.
  17. M. K. Islam, F. Jahan, J. H. Min, and J. H. Baek, "Fast Object Classification Using Texture and Color Information for Video Surveillance Applications", Journal of Korea Navigation Institute, South Korea, vol. 15, no. 1, pp. 140-146, February 2011.
  18. J. H. Min, M. K. Islam, A. K. Paul, and J. H. Baek, "Realtime Markerless 3D Object Tracking for Augmented Reality", Journal of the Institute of Signal Processing and Systems, South Korea, vol. 14, no. 2, pp. 272-277, April 2010.
  19. A. K. Paul, M. K. Islam, J. H. Min, Y. B. Kim, and J. H. Baek, "Natural Object Recognition for Augmented Reality Applications", Journal of the Institute of Signal Processing and Systems, South Korea, vol. 11, no. 2, pp. 143-150, April 2010.