Enhancing Document Clustering using Important Term of Cluster and Wikipedia

군집의 중요 용어와 위키피디아를 이용한 문서군집 향상

  • Park, Sun (Institute Research of Information Science and Engineering, Mokpo National University) ;
  • Lee, Yeon-Woo (Department of Information Communication Engineering, Mokpo National University) ;
  • Jeong, Min-A (Department of Computer Engineering, Mokpo National University) ;
  • Lee, Seong-Ro (Department of Information Electronic Engineering, Mokpo National University)
  • 박선 (목포대학교 정보산업연구소) ;
  • 이연우 (목포대학교 정보통신공학과) ;
  • 정민아 (목포대학교 컴퓨터공학과) ;
  • 이성로 (목포대학교 정보전자공학과)
  • Received : 2011.11.16
  • Accepted : 2011.12.27
  • Published : 2012.03.25

Abstract

This paper proposes a new enhancing document clustering method using the important terms of cluster and the wikipedia. The proposed method can well represent the concept of cluster topics by means of selecting the important terms in cluster by the semantic features of NMF. It can solve the problem of "bags of words" to be not considered the meaningful relationships between documents and clusters, which expands the important terms of cluster by using of the synonyms of wikipedia. Also, it can improve the quality of document clustering which uses the expanded cluster important terms to refine the initial cluster by re-clustering. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.

본 논문은 군집 중요 용어들과 위키피디아(Wikipedia)의 동음이의어를 이용하여 문서군집의 성능을 향상시키는 새로운 방법을 제안한다. 제안된 방법은 비음수행렬분해의 의미특징을 이용하여 군집 중요 용어들을 선택함으로서 군집을 대표할 수 있는 군집 주제(topic)의 개념을 잘 표현할 수 있으며, 군집의 중요 용어에 위키피디아의 동음이의어를 사용하여 확장함으로써 문서와 군집 간의 의미관계를 고려하지 않는 용어집합(bag-of-words) 문제를 해결할 수 있다. 또한 확장된 군집의 중요 용어를 이용하여 문서집합을 재 군집하여 초기 군집을 정제함으로써 군집방법의 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. X. Hu, X. Zhang, C. Lu, E. K. Park, X. Zhou, "Exploiting Wikipedia as External Knowledge for Document Clustering", Proceeding of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 397-406, 2009.
  2. A. Huang, D. Milne, E. Frank, I. H. Witten, "Clustering Document with Active Learning using Wikipedia", Proceeding of the 8th IEEE International Conference on Data Mining (ICDM'08), pp. 839-844, 2008.
  3. A. Huang, D. Milne, E. Frank, I. H. Witten, "Clustering Document using a Wikipedia-based Concept Representation", Proceeding of Advances in Knowledge discovery and data mining, LNCS 5476, pp.628-636, 2009.
  4. G. V. R. Kiran, K. Ravi Shankar, V. Pudi, "Frequent Itemset based Hierarchical Document Clustering using Wikipedia as External Knowledge", Technical Report No: IIT/TR/2010/33, Wales, UK, 2010.
  5. wikipedia, "http://www.wikpedia.com/", 2011.
  6. D. D. Lee, H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, 401, pp. 788-791, Oct. 1999. https://doi.org/10.1038/44565
  7. A. J. C. Trappey, C. V. Trappey, F. C. Hsu, and D. W. Hsiao, "A Fuzzy Ontological Knowledge Docment Clustering Methodolgoy, The Journal of IEEE Transcation On System, Man and Cypernetics," vol. 39, no. 3, Jun. pp.806-814, 2009. https://doi.org/10.1109/TSMCB.2008.2009463
  8. T. Li, S. Ma, M. Ogihara, "Document Clustering via Adaptive Subspace Iteration", In proceeding of SIGIR'04, pp. 218-225, 2004.
  9. F. Wang, C. Zhang, "Regularized Clustering for Documents", In proceeding of ACM SIGIR'07, pp. 95-102, 2007.
  10. W. Xu, X. Liu, Y. Gon, "Document Clustering Based On Non-negative Matrix Factorization", Proceeding of Special Interest Group on Information Retrieval (SIGIR), pp. 267-274, 2003.
  11. S. Park, D. U. An, B. R. Char, C. W. Kim, "Document Clustering with Cluster Refinement and Non-negative Matrix Factorization", In proceeding of ICONIP'09, pp. 281-288, 2009.
  12. 박선, 김철원, "비음수 행렬 분해와 군집의 응집도를 이용한 문서군집", 한국해양정보통신학회 논문지, 제13권 제12호, pp. 2603-2608, 2009.
  13. 박선, 김경준, "비음수 행렬 분해와 퍼지 관계를 이용한 문서군집", 한국항행학회 논문지, 제14권 제2호, pp. 239-246, 2010.
  14. 박선, 안동언, "주성분 분석과 퍼지 연관을 이용한 문서군집 방법", 한국정보처리학회 논문지, 제17-B 권, 제2호, pp. 177-182, 2010.
  15. 박선, 김경준, 이진석, 이성로, "군집 주제의 유의어와 유사도를 이용한 문서군집 향상 방법", 전자공학회논문지 제48권 SP편 제5호, pp. 30-38, 2011.
  16. List of Wikipedias, "http://meta.wikimedia.org/wiki/List_of_Wikipedias", 11월, 2011.
  17. 한경한, 남경완, "한국어 정보 처리 입문 : 컴퓨터가 우리말을 이해하려면", 커뮤니케이션북스, 2007.
  18. B. Y. Ricardo, R. N. Berthier, "Moden Information Retrieval", ACM Press, 1999.
  19. J. Han, M. Kamber, "Second Edition Data Mining Concepts and Techniques", Morgan Kaufman, 2006.
  20. The 20 newsgroups data set. http://people.csail.mit.edu/jrennie/20Newsgroups/, 2011.