• Title/Summary/Keyword: contraction mappings

Search Result 94, Processing Time 0.024 seconds

COMMON FIXED POINT THEOREMS FOR TWO MAPPINGS WITH ψ-ϕ-CONTRACTIVE OR EXPANSIVE TYPE CONDITIONS ON COMPLEX-VALUED METRIC SPACES

  • JIN, HAI-LAN;PIAO, YONG-JIE
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.451-463
    • /
    • 2015
  • A continuous and non-decreasing function ${\psi}$ and another continuous function ${\phi}$ with ${\phi}(z)=0{\Leftrightarrow}z=0$ defined on $\mathbb{C}^+=\{x+yi:x,y{\geq}0\}$ are introduced, the ${\psi}-{\phi}$-contractive or expansive type conditions are considered, and the existence theorems of common fixed points for two mappings defined on a complex valued metric space are obtained. Also, Banach contraction principle and a fixed point theorem for a I-expansive type mapping are given on complex valued metric spaces.

SOME FIXED POINT THEOREMS FOR RATIONAL (𝛼, 𝛽, Z)-CONTRACTION MAPPINGS UNDER SIMULATION FUNCTIONS AND CYCLIC (𝛼, 𝛽)-ADMISSIBILITY

  • Snehlata, Mishra;Anil Kumar, Dubey;Urmila, Mishra;Ho Geun, Hyun
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.757-771
    • /
    • 2022
  • In this paper, we present some fixed point theorems for rational type contractive conditions in the setting of a complete metric space via a cyclic (𝛼, 𝛽)-admissible mapping imbedded in simulation function. Our results extend and generalize some previous works from the existing literature. We also give some examples to illustrate the obtained results.

A COMMON FIXED POINT THEOREM IN AN M*-METRIC SPACE AND AN APPLICATION

  • Gharib, Gharib M.;Malkawi, Abed Al-Rahman M.;Rabaiah, Ayat M.;Shatanawi, Wasfi A.;Alsauodi, Maha S.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.289-308
    • /
    • 2022
  • In this paper, we introduce the concept of M*-metric spaces and how much the M*-metric and the b-metric spaces are related. Moreover, we introduce some ways of generating M*-metric spaces. Also, we investigate some types of convergence associated with M*-metric spaces. Some common fixed point for contraction and generalized contraction mappings in M*-metric spaces. Our work has been supported by many examples and an application.

MULTI-VALUED HICKS CONTRACTIONS IN 𝑏-MENGER SPACES

  • Youssef Achtoun;Mohammed Sefian Lamarti;Ismail Tahiri
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.477-485
    • /
    • 2024
  • In this work, we will generalize the notion of multivalued (ν, 𝒞)-contraction mapping in 𝑏-Menger spaces and we shall give a new fixed point result of this type of mappings. As a consequence of our main result, we obtained the corresponding fixed point theorem in fuzzy 𝑏-metric spaces. Also, an example will be given to illustrate the main theorem in ordinary 𝑏-metric spaces.

A COMMON FIXED POINT RESULT FOR A (${\psi}$, ${\varphi}$)-WEAK CONTRACTIVE CONDITION TYPE

  • Aydi, Hassen
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.809-820
    • /
    • 2012
  • We establish a coincidence and a common fixed point result for four mappings involving a (${\psi}$, ${\varphi}$)-weak contractive condition type on a complete metric space. We take on ${\psi}$ and ${\varphi}$ the same conditions given by Popescu [Fixed points for (${\psi}$, ${\varphi}$)-weak contractions, Appl. Math. Lett. 24 (2011), 1-4].

Fixed Point Theorems for Multivalued Mappings in Banach Spaces

  • Bae, Jong Sook;Park, Myoung Sook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.3 no.1
    • /
    • pp.103-110
    • /
    • 1990
  • Let K be a nonempty weakly compact convex subset of a Banach space X and T : K ${\rightarrow}$ C(X) a nonexpansive mapping satisfying $P_T(x){\cap}clI_K(x){\neq}{\emptyset}$. We first show that if I - T is semiconvex type then T has a fixed point. Also we obtain the same result without the condition that I - T is semiconvex type in a Banach space satisfying Opial's condition. Lastly we extend the result of [5] to the case, that T is an 1-set contraction mapping.

  • PDF

SOME RESULTS ON COMMON BEST PROXIMITY POINT AND COMMON FIXED POINT THEOREM IN PROBABILISTIC MENGER SPACE

  • Shayanpour, Hamid
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1037-1056
    • /
    • 2016
  • In this paper, we define the concepts of commute proximally, dominate proximally, weakly dominate proximally, proximal generalized ${\varphi}$-contraction and common best proximity point in probabilistic Menger space. We prove some common best proximity point and common fixed point theorems for dominate proximally and weakly dominate proximally mappings in probabilistic Menger space under certain conditions. Finally we show that proximal generalized ${\varphi}$-contractions have best proximity point in probabilistic Menger space. Our results generalize many known results in metric space.

Existence of Solutions of Integral and Fractional Differential Equations Using α-type Rational F-contractions in Metric-like Spaces

  • Nashine, Hemant Kumar;Kadelburg, Zoran;Agarwal, Ravi P.
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.651-675
    • /
    • 2018
  • We present ${\alpha}$-type rational F-contractions in metric-like spaces, and respective fixed and common fixed point results for weakly ${\alpha}$-admissible mappings. Useful examples illustrate the effectiveness of the presented results. As applications, we obtain sufficient conditions for the existence of solutions of a certain type of integral equations followed by examples of nonlinear fractional differential equations that are verified numerically.

FIXED POINTS FOR SOME CONTRACTIVE MAPPING IN PARTIAL METRIC SPACES

  • Kim, Chang Il;Han, Giljun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.387-394
    • /
    • 2020
  • Matthews introduced the concepts of partial metric spaces and proved the Banach fixed point theorem in complete partial metric spaces. Dukic, Kadelburg, and Radenovic proved fixed point theorems for Geraghty-type mappings in complete partial metric spaces. In this paper, we prove the fixed point theorem for some contractive mapping in a complete partial metric space.

SOME COINCIDENCE POINT THEOREMS FOR PREŠIĆ-ĆIRIĆ TYPE CONTRACTIONS

  • Khan, Qamrul Haq;Sk, Faruk
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.1091-1104
    • /
    • 2021
  • In this paper, we prove some coincidence point theorems for mappings satisfying nonlinear Prešić-Ćirić type contraction in complete metric spaces as well as in ordered metric spaces. As a consequence, we deduce corresponding fixed point theorems. Further, we give some examples to substantiate the utility of our results.