DOI QR코드

DOI QR Code

Existence of Solutions of Integral and Fractional Differential Equations Using α-type Rational F-contractions in Metric-like Spaces

  • Received : 2017.09.04
  • Accepted : 2018.08.13
  • Published : 2018.12.23

Abstract

We present ${\alpha}$-type rational F-contractions in metric-like spaces, and respective fixed and common fixed point results for weakly ${\alpha}$-admissible mappings. Useful examples illustrate the effectiveness of the presented results. As applications, we obtain sufficient conditions for the existence of solutions of a certain type of integral equations followed by examples of nonlinear fractional differential equations that are verified numerically.

Keywords

References

  1. H. H. Alsulami, E. Karapinar and H. Piri, Fixed points of modified F-contractive mappings in complete metric-like spaces, J. Funct. Spaces, (2015), Article ID 270971, 9 pp.
  2. A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., (2012), 2012:204, 10 pp. https://doi.org/10.1186/1687-1812-2012-204
  3. H. Aydi, M. Jellali and E. Karapinar, Common fixed points for generalized ${\alpha}$-implicit contractions in partial metric spaces: consequences and application, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Math., 109(2)(2015), 367-384.
  4. D. Baleanu, S. Rezapour and M. Mohammadi, Some existence results on nonlinear fractional differential equations, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371(2013), Article ID 20120144, 7 pp.
  5. D. Gopal, M. Abbas, D. K. Patel and C. Vetro, Fixed points of ${\alpha}$-type F-contractive mappings with an application to nonlinear fractional differential equation, Acta Math. Sci. Ser. B, 36(3)(2016), 957-970. https://doi.org/10.1016/S0252-9602(16)30052-2
  6. P. Hitzler and A. Seda, Mathematical Aspects of Logic Programming Semantics, Chapman & Hall/CRC Studies in Informatic Series, CRC Press, 2011.
  7. N. Hussain and P. Salimi, Suzuki-Wardowski type fixed point theorems for ${\alpha}$-GF-contractions, Taiwanese J. Math., 18(6)(2014), 1879-1895. https://doi.org/10.11650/tjm.18.2014.4462
  8. E. Karapinar, M. A. Kutbi, H. Piri and D. O'Regan, Fixed points of conditionally F-contractions in complete metric-like spaces, Fixed Point Theory Appl., (2015), 2015:126, 14 pp. https://doi.org/10.1186/s13663-015-0377-3
  9. E. Karapinar and P. Salimi, Dislocated metric space to metric spaces with some fixed point theorems, Fixed Point Theory Appl., (2013), 2013:222, 19 pp. https://doi.org/10.1186/1687-1812-2013-222
  10. X.-L. Liu, A. H. Ansari, S. Chandok and S. Radenovic, On some results in metric spaces using auxiliary simulation functions via new functions, J. Comput. Anal. Appl., 24(6)(2018), 1103-1114.
  11. S. G. Malhotra, S. Radenovic and S. Shukla, Some fixed point results without monotone property in partially ordered metric-like spaces, J. Egyptian Math. Soc., 22(2014), 83-89. https://doi.org/10.1016/j.joems.2013.06.010
  12. S. G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci, 728 (1994), 183-197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
  13. B. Samet, C. Vetro and P. Vetro, Fixed point theorems for ${\alpha}$-${\varphi}$-contractive type mappings, Nonlinear Anal., 75(2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014
  14. N. Shobkolaei, S. Sedghi, J. R. Roshan and N. Hussain, Suzuki type fixed point results in metric-like spaces, J. Function Spaces Appl., (2013), Art. ID 143686, 9 pp.
  15. S. Shukla, S. Radenovic and V. C. Rajic, Some common fixed point theorems in 0-${\sigma}$-complete metric-like spaces, Vietnam J. Math., 41(2013), 341-352. https://doi.org/10.1007/s10013-013-0028-0
  16. W. Sintunavarat, A new approach to ${\alpha}$-${\varphi}$-contractive mappings and generalized Ulam-Hyers stability, well-posedness and limit shadowing results, Carpathian J. Math., 31(3)(2015), 395-401.
  17. W. Sintunavarat, Fixed point results in b-metric spaces approach to the existence of a solution for nonlinear integral equations, Rev. Real Acad. Cie. Exac. Fix. Nat., Ser A. Math., 110(2)(2016), 585-600. https://doi.org/10.1007/s13398-015-0251-5
  18. D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., (2012), 2012:94, 6 pp. https://doi.org/10.1186/1687-1812-2012-94