DOI QR코드

DOI QR Code

On [m, C]-symmetric Operators

  • Received : 2017.08.23
  • Accepted : 2018.10.23
  • Published : 2018.12.23

Abstract

In this paper first we show properties of isosymmetric operators given by M. Stankus [13]. Next we introduce an [m, C]-symmetric operator T on a complex Hilbert space H. We investigate properties of the spectrum of an [m, C]-symmetric operator and prove that if T is an [m, C]-symmetric operator and Q is an n-nilpotent operator, respectively, then T + Q is an [m + 2n - 2, C]-symmetric operator. Finally, we show that if T is [m, C]-symmetric and S is [n, D]-symmetric, then $T{\otimes}S$ is [m + n - 1, $C{\otimes}D$]-symmetric.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. J. Agler and M. Stankus, m-isometric transformations of Hilbert space I, Intgr. Equat. Oper. Theory, 21(1995), 383-429. https://doi.org/10.1007/BF01222016
  2. T. Bermudes, A. Martinon, V. Muller and A. J. Noda, Perturbation of m-isometries and nilpotent operators, Abstr. Appl. Anal., (2014), Art. ID 745479, 6 pp.
  3. M. Cho, C. Gu and W. Y. Lee, Elementary properties of ${\infty}$-isometries on a Hilbert space, Linear Algebra Appl., 511(2016), 378-402. https://doi.org/10.1016/j.laa.2016.09.023
  4. M. Cho, J. E. Lee and H. Motoyoshi, On [m, C]-isometric operators, Filomat, 31(7)(2017), 2073-2080. https://doi.org/10.2298/FIL1707073C
  5. M. Cho, S. Ota and K. Tanahashi, Invertible weighted shift operators which are m-isometries, Proc. Amer. Math. Soc. 141(2013), 4241-4247. https://doi.org/10.1090/S0002-9939-2013-11701-6
  6. B. Duggal, Tensor product of n-isometries, Linear Algebra Appl., 437(2012), 307-318. https://doi.org/10.1016/j.laa.2012.02.017
  7. S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc., 358(2006), 1285-1315.
  8. C. Gu and M. Stankus, Some results on higher order isometries and symmetries: Products and sums a nilpotent operator, Linear Algebra Appl., 469(2015), 500-509. https://doi.org/10.1016/j.laa.2014.09.044
  9. J. W. Helton, Operators with a representation as multiplication by x on a Sobolev space, Proc. Internat. Conference on Operator Theory, Hungary, 1970.
  10. J. W. Helton, Infinite dimensional Jordan operators and Sturm-Liouville conjugate point theory, Trans. Amer. Math. Soc., 170(1972), 305-331. https://doi.org/10.1090/S0002-9947-1972-0308829-2
  11. S. Jung, E. Ko and J. E. Lee, On complex symmetric operator matrices, J. Math. Anal. Appl. 406(2013), 373-385. https://doi.org/10.1016/j.jmaa.2013.04.056
  12. S. A. McCullough and L. Rodman, Hereditary classes of operators and matrices, Amer. Math. Monthly, 104(1997), 415-430. https://doi.org/10.1080/00029890.1997.11990659
  13. M. Stankus, m-Isometries, n-symmetries and other linear transformations which are hereditary roots, Integr. Equat. Oper. Theory, 75(2013), 301-321. https://doi.org/10.1007/s00020-012-2026-0