KYUNGPOOK Math. J. 58(2018), 637-650 https://doi.org/10.5666/KMJ.2018.58.4.637 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

On [m, C]-symmetric Operators

MUNEO CHō Department of Mathematics, Kanagawa University, Hiratsuka 259-1293, Japan e-mail: chiyom01@kanagawa-u.ac.jp

JI EUN LEE* Department of Mathematics and Statistics, Sejong University, Seoul 05006, Korea e-mail: jieunlee7@sejong.ac.kr and jieun7@ewhain.net

KÔTARÔ TANAHASHI Department of Mathematics, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan e-mail: tanahasi@tohoku-mpu.ac.jp

JUN TOMIYAMA Meguro-ku Nakane 11-10-201, Tokyo 152-0031, Japan e-mail: juntomi@med.email.ne.jp

ABSTRACT. In this paper first we show properties of isosymmetric operators given by M. Stankus [13]. Next we introduce an [m, C]-symmetric operator T on a complex Hilbert space \mathcal{H} . We investigate properties of the spectrum of an [m, C]-symmetric operator and prove that if T is an [m, C]-symmetric operator and Q is an n-nilpotent operator, respectively, then T + Q is an [m + 2n - 2, C]-symmetric operator. Finally, we show that if T is [m, C]-symmetric and S is [n, D]-symmetric, then $T \otimes S$ is $[m + n - 1, C \otimes D]$ -symmetric.

1. Introduction

Let \mathcal{H} be a complex Hilbert space with the inner product \langle , \rangle and $B(\mathcal{H})$ be the set of bounded linear operators on \mathcal{H} . Let \mathbb{N} be the set of all natural numbers. For the study of Jordan operators, J.W. Helton ([9] and [10]) introduced an operator

^{*} Corresponding Author.

Received August 23, 2017; revised February 12, 2018; accepted October 23, 2018.

²⁰¹⁰ Mathematics Subject Classification: primary 47A11, secondary 47B25, 47B99.

Key words and phrases: Hilbert space, linear operator, conjugation, m-isometry, m-symmetric operator.

 $T \in B(\mathcal{H})$ which satisfies

$$\alpha_m(T) := \sum_{j=0}^m (-1)^j \binom{m}{j} T^{*m-j} T^j = 0 \quad (m \in \mathbb{N}).$$

In particular, if T is normal, then $\alpha_m(T) = (T^* - T)^m$. An operator $T \in B(\mathcal{H})$ is said to be an *m*-symmetric operator if $\alpha_m(T) = 0$. Hence T is 1-symmetric if and only if T is Hermitian. It is well known that if T is *m*-symmetric, then T is *n*-symmetric for all $n \geq m$. The concept of *m*-symmetric operators is little strong. For example, if T is *m*-symmetric, then $\sigma(T) \subset \mathbb{R}$ (cf.[10]). And T is Hermitian even if T is 2-symmetric. Also if T is normal and *m*-symmetric, then T is Hermitian due to the fact that $T^* - T$ is normal and nilpotent, that is, $T^* - T = 0$.

Recently, C. Gu and M. Stankus ([8]) showed interesting properties of *m*-symmetric operators. On the other hand, for $m \in \mathbb{N}$, an operator $T \in B(\mathcal{H})$ is said to be an *m*-isometric operator if

$$\beta_m(T) := \sum_{j=0}^m (-1)^j \binom{m}{j} T^{*m-j} T^{m-j} = 0.$$

It is well known that if T is m-isometric, then T is n-isometric for all $n \ge m$. In 1995, J. Agler and M. Stankus [1] introduced an m-isometric operator and showed many important results of such an operator. If T is an invertible m-isometric operator and m is even, then T is (m-1)-isometric. But if T is m-symmetric and m is even, then T is always (m-1)-symmetric by Theorem 3.4 of [12]. For every odd number m, there exists an invertible m-isometric operator T which is not (m-1)-isometric (see Theorem 1 in [5]).

Throughout this paper, let I be the identity operator on \mathcal{H} and m, n be natural numbers. An operator $Q \in B(\mathcal{H})$ is said to be a nilpotent operator of order n if $Q^n = 0$ and $Q^{n-1} \neq 0$. For a subset $A \subset \mathbb{C}$, let $A^* = \{\overline{z} : z \in A\}$. Let $\sigma(T)$ and $\sigma_p(T)$ be the spectrum and the point spectrum of $T \in B(\mathcal{H})$, respectively. The approximate point spectrum of T is defined by $\sigma_a(T) := \{z \in \mathbb{C} : T - zI \text{ is not surjective}\}$. It is known that $\sigma(T) = \sigma_a(T) \cup \sigma_s(T), \sigma_a(T)^* = \sigma_s(T^*)$, and $\sigma_s(T)^* = \sigma_a(T^*)$.

2. Isosymmetric Operators

First we show the following result of *m*-symmetric operators.

Proposition 2.1. Let $T \in B(\mathcal{H})$. Then the following statements hold;

- (a) T is a 2-symmetric operator if and only if T is Hermitian.
- (b) Let T be an m-symmetric operator. For $a \neq b$ and non-zero vectors $x, y \in \mathcal{H}$, if Tx = ax and Ty = by, then $\langle x, y \rangle = 0$.

On [m, C]-symmetric Operators

(c) Let T be an m-symmetric operator. For $a \neq b$ and sequences $\{x_k\}, \{y_k\}$ of unit vectors of \mathcal{H} , if $(T-a)x_k \to 0$ and $(T-b)y_k \to 0$, then $\lim_{k \to \infty} \langle x_k, y_k \rangle = 0$.

Proof. (a) If T is Hermitian, then it is obvious that T is 2-symmetric. If T is 2-symmetric, then T is 1-symmetric from [12, Theorem 3.4] and so it is Hermitian. (b) Since $a, b \in \sigma(T)$, it follows from [10] that a, b are real numbers. Hence it holds

$$0 = \langle \alpha_m(T)x, y \rangle = (b-a)^m \cdot \langle x, y \rangle.$$

Since $a \neq b$, we have $\langle x, y \rangle = 0$.

(c) By similar arguments of the proof of (b), a, b are real numbers and it holds

$$0 = \lim_{k \to \infty} \langle \alpha_m(T) x_k, y_k \rangle = (b - a)^m \cdot \lim_{k \to \infty} \langle x_k, y_k \rangle.$$

Since $a \neq b$, we have $\lim_{k \to \infty} \langle x_k, y_k \rangle = 0$.

Definition 1. For an operator $T \in B(\mathcal{H})$, we define $\gamma_{m,n}(T)$ by

$$\gamma_{m,n}(T) = \sum_{j=0}^{m} (-1)^j \binom{m}{j} T^{*m-j} \alpha_n(T) T^{m-j} = \sum_{k=0}^{n} (-1)^k \binom{n}{k} T^{*n-k} \beta_m(T) T^k.$$

Then T is said to be (m, n)-isosymmetric if $\gamma_{m,n}(T) = 0$.

It is easy to see that

$$\gamma_{m+1,n}(T) = T^* \gamma_{m,n}(T) T - \gamma_{m,n}(T)$$
 and $\gamma_{m,n+1}(T) = T^* \gamma_{m,n}(T) - \gamma_{m,n}(T) T$.

Hence if T is (m, n)-isosymmetric, then T is (m', n')-isosymmetric for all $n' \ge n$ and $n' \ge n$. M. Stankus proved the following properties.

Proposition 2.2. ([13, Corollary 30]) Let T be (m, n)-isosymmetric.

- (1) If $\sigma(T) \subset \{x \in \mathbb{R} : |x| > 1\}$ or $\sigma(T) \subset \{x \in \mathbb{R} : |x| < 1\}$, then T is *n*-symmetric.
- (2) If $\sigma(T) \subset \{e^{i\theta} : 0 < \theta < \pi\}$ or $\sigma(T) \subset \{e^{i\theta} : \pi < \theta < 2\pi\}$, then T is *m*-isometric.

For $a, b \in \mathbb{C}$ and non-zero vectors $x, y \in \mathcal{H}$, if Tx = ax, Ty = by, then it holds that

$$\begin{aligned} \langle \gamma_{m,n}(T)x,y \rangle &= \langle (\sum_{j=0}^{m} (-1)^{j} \binom{m}{j} T^{*m-j} \alpha_{n}(T) T^{m-j})x,y \rangle \\ &= (a\overline{b}-1)^{m} (a-\overline{b})^{n} \langle x,y \rangle. \end{aligned}$$

Hence we have the following theorem.

Theorem 2.3. Let T be (m, n)-isosymmetric and x, y be unit vectors and x_k, y_k be sequences of unit vectors of \mathcal{H} .

- (1) If Tx = ax, Ty = by, $a \neq b$ and $a \neq \overline{b}$, then $\langle x, y \rangle = 0$.
- (2) If $(T-a)x_k \to 0, (T-b)y_k \to 0 \ (k \to \infty), a \neq b \ and \ a \neq \overline{b}, \ then$ $<math display="block">\lim_{k \to \infty} \langle x_k, y_k \rangle = 0.$

Theorem 2.4. Let T be (m, n)-isosymmetric.

- (1) Then T^k is (m, n)-isosymmetric for any $k \in \mathbb{N}$.
- (2) If T is invertible, then T^{-1} is (m, n)-isosymmetric.

Proof. (1) Note that for $k \in \mathbb{N}$, the following equation holds;

$$(y^{k}x^{k} - 1)^{m}(y^{k} - x^{k})^{n}$$

$$= ((yx - 1)(y^{k-1}x^{k-1} + y^{k-2}x^{k-2} + \dots + 1))^{m} \cdot ((y - x)(y^{k-1} + y^{k-2}x + \dots + x^{k-1}))^{n}$$

$$= \sum_{\ell=0}^{m(k-1)} \sum_{j=0}^{n(k-1)} \lambda_{\ell}\mu_{j}y^{m(k-1)-\ell}y^{n(k-1)-j}(yx - 1)^{m}(y - x)^{n}x^{j}x^{m(k-1)-\ell}$$

where λ_{ℓ} and μ_j are some constants. From this, we have

$$\gamma_{m,n}(T^k) = \sum_{\ell=0}^{m(k-1)} \sum_{j=0}^{n(k-1)} \lambda_\ell \mu_j T^{*m(k-1)-\ell+n(k-1)-j} \gamma_{m,n}(T) T^{j+m(k-1)-\ell}.$$

Hence T^k is (m, n)-isosymmetric.

(2) Assume that T is invertible. Since

$$\begin{array}{lcl} 0 &=& T^{*-m-n}\gamma_{m,n}(T)T^{-m-n} \\ &=& \sum_{j=0}^{m}(-1)^{j} \left(\begin{array}{c} m \\ j \end{array} \right) T^{*-m-n}T^{*m-j}\alpha_{n}(T)T^{m-j}T^{-m-n} \\ &=& \sum_{j=0}^{m}(-1)^{j} \left(\begin{array}{c} m \\ j \end{array} \right) T^{*-n-j}\alpha_{n}(T)T^{-n-j} \\ &=& \sum_{j=0}^{m}(-1)^{j} \left(\begin{array}{c} m \\ j \end{array} \right) T^{*-j} \left(T^{*-n}\alpha_{n}(T)T^{-n} \right) T^{-j} \\ &=& \begin{cases} \sum_{j=0}^{m}(-1)^{j} \left(\begin{array}{c} m \\ j \end{array} \right) T^{*-j} \cdot (\alpha_{n}(T^{-1})) \cdot T^{-j} &=& \gamma_{m,n}(T^{-1}) & (m \text{ is even}) \\ &\sum_{j=0}^{m}(-1)^{j} \left(\begin{array}{c} m \\ j \end{array} \right) T^{*-j} \cdot (-\alpha_{n}(T^{-1})) \cdot T^{-j} &=& -\gamma_{m,n}(T^{-1}) & (m \text{ is odd}), \end{cases} \end{array}$$

it follows that T^{-1} is (m, n)-isosymmetric.

Operators T and S are said to be *doubly commuting* if TS = ST and $TS^* = S^*T$. From the equation

$$((y_1 + y_2)(x_1 + x_2) - 1)^m ((y_1 + y_2) - (x_1 + x_2))^n$$

= $\sum_{j=0}^n \sum_{i+l+h=m} \binom{n}{j} \binom{m}{i,l,h} (y_1 + y_2)^i y_2^l (y_1 x_1 - 1)^h (y_1 - x_1)^{n-j} (y_2 - x_2)^j x_1^l x_2^i$

if T and S are doubly commuting, then it holds (2.1)

$$\gamma_{m,n}(T+S) = \sum_{j=0}^{n} \sum_{i+l+h=m} \binom{n}{j} \binom{m}{i,l,h} \cdot (T^*+S^*)^i S^{*l} \gamma_{h,n-j}(T) \alpha_j(S) T^l S^i.$$

Theorem 2.5. Let T be (m, n)-isosymmetric and let Q be a nilpotent operator of order k. If T and Q are doubly commuting, then T + Q is (m + 2k - 2, n + 2k - 1)-isosymmetric.

Proof. From equation (2.1), it holds

$$\gamma_{m+2k-2,n+2k-1}(T+Q) = \sum_{j=0}^{n+2k-1} \sum_{i+l+h=m+2k-2} \binom{n+2k-1}{j} \binom{m+2k-2}{i,l,h}$$
$$\cdot (T^*+Q^*)^i Q^{*l} \gamma_{h,n+2k-1-j}(T) \alpha_j(Q) T^l Q^i.$$

(1) If $j \ge 2k$ or $i \ge k$ or $l \ge k$, then $\alpha_j(Q) = 0$ or $Q^i = 0$ or $Q^{*l} = 0$, respectively. (2) If $j \le 2k - 1$ and $i \le k - 1$ and $l \le k - 1$, then $h = m + 2k - 2 - i - l \ge m$ and $n + 2k - 1 - j \ge n + 2k - 1 - (2k - 1) = n$, i.e., $\gamma_{h,n+2k-1-j}(T) = 0$.

By (1) and (2) we have $\gamma_{m+2k-2,n+2k-1}(T+Q) = 0$. Therefore T+Q is (m+2k-2, n+2k-1)-isosymmetric.

Note that the equation

$$(y_1y_2x_1x_2-1)^m \cdot (y_1y_2-x_1x_2)^n$$

= $\sum_{k=0}^m \sum_{j=0}^n \binom{m}{k} \binom{n}{j} y_1^{j+k} (y_1x_1-1)^{m-k} (y_1-x_1)^{n-j} (y_2x_2-1)^k (y_2-x_2)^j x_1^k x_2^{n-j}$

From this, if T and S are doubly commuting, then it holds

(2.2)
$$\gamma_{m,n}(TS) = \sum_{k=0}^{m} \sum_{j=0}^{n} \binom{m}{k} \binom{n}{j} T^{*j+k} \gamma_{m-k,n-j}(T) \cdot \gamma_{k,j}(S) T^{k} S^{n-j}.$$

Theorem 2.6. Let T be (m, n)-isosymmetric and let S be m'-isometric and n'symmetric. If T and S are doubly commuting, then TS is (m + m' - 1, n + n' - 1)isosymmetric. *Proof.* From equation (2.2), it holds

$$\gamma_{m+m'-1,n+n'-1}(TS) = \sum_{k=0}^{m+m'-1} \sum_{j=0}^{n+n'-1} \binom{n+n'-1}{j} \binom{m+m'-1}{k} T^{*j+k}$$
$$\cdot \gamma_{m+m'-1-k,n+n'-1-j}(T) \cdot \gamma_{k,j}(S) \cdot T^k S^{n-j}.$$

(1) If $k \ge m'$ or $j \ge n'$, then $\gamma_{k,j}(S) = 0$. (2) If $k \le m' - 1$ and $i \le n' - 1$ then m

(2) If $k \le m' - 1$ and $j \le n' - 1$, then $m + m' - 1 - k \ge m$ and $n + n' - 1 - j \ge n$, i.e., $\gamma_{m+m'-1-k,n+n'-1-j}(T) = 0$.

By (1) and (2) we have $\gamma_{m+m'-1,n+n'-1}(TS) = 0$. Hence it completes the proof.

For a complex Hilbert space \mathcal{H} , let $\mathcal{H} \otimes \mathcal{H}$ denote the completion of the algebraic tensor product of \mathcal{H} and \mathcal{H} endowed a reasonable uniform cross-norm. For operators $T \in B(\mathcal{H})$ and $S \in B(\mathcal{H})$, $T \otimes S \in B(\mathcal{H} \otimes \mathcal{H})$ denote the *tensor product* operator defined by T and S. Note that $T \otimes S = (T \otimes I)(I \otimes S) = (I \otimes S)(T \otimes I)$.

Theorem 2.7. Let T be (m, n)-isosymmetric and let S be m'-isometric and n'symmetric. Then $T \otimes S$ is (m + m' - 1, n + n' - 1)-isosymmetric.

Proof. It is clear that if T is (m, n)-isosymmetric, then $T \otimes I$ is (m, n)-isosymmetric and if S is m'-isometric and n'-symmetric, then $I \otimes S$ is m'-isometric and n'-symmetric. Since $T \otimes I$ and $I \otimes S$ are doubly commuting, it follows from Theorem 2.6 that $T \otimes S$ is (m + m' - 1, n + n' - 1)-isosymmetric. Hence it completes the proof. \Box

3. Conjugation and Example

In this section, we introduce [m, C]-symmetric operators and provide several examples. An antilinear operator C on \mathcal{H} is said to be a *conjugation* if C satisfies $C^2 = I$ and $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$. An operator $T \in B(\mathcal{H})$ is said to be *complex symmetric* if $CTC = T^*$ for some conjugation C.

Definition 2. For an operator $T \in B(\mathcal{H})$ and a conjugation C, we define the operator $\alpha_m(T; C)$ by

$$\alpha_m(T;C) = \sum_{j=0}^m (-1)^j \binom{m}{j} C T^{m-j} C \cdot T^j.$$

An operator $T \in B(\mathcal{H})$ is said to be an [m, C]-symmetric operator if $\alpha_m(T; C) = 0$.

Hence if T is complex symmetric and $[m,C]\mbox{-symmetric},$ then T is $m\mbox{-symmetric}.$ It holds that

(3.1)
$$CTC \cdot \alpha_m(T;C) - \alpha_m(T;C) \cdot T = \alpha_{m+1}(T;C).$$

Moreover, if T is [m, C]-symmetric, then T is [n, C]-symmetric for every natural number $n (\geq m)$ and $\ker(\alpha_{m-1}(T; C)) \ (m \geq 2)$ is an invariant subspace for T.

Example 3.1. Let $\mathcal{H} = \mathbb{C}^2$ and let C be a conjugation on \mathcal{H} given by $C\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} \overline{y}\\ \overline{x} \end{pmatrix}$ for $x, y \in \mathbb{C}$.

(a) If $T = \begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix}$ on C^2 , then T is not Hermitian and $CTC = \begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix} = T$. Hence T is [1, C]-symmetric.

Hence, in this case, $\sigma(T) = \{0\}$ due to the fact that T is nilpotent.

- (b) Let $S = \begin{pmatrix} i & \sqrt{2} \\ \sqrt{2} & -i \end{pmatrix}$ on C^2 . Then S is not Hermitian and $CSC = \begin{pmatrix} i & \sqrt{2} \\ \sqrt{2} & -i \end{pmatrix}$ and $CSC = S \neq S^*$. Therefore, S is [1, C]-symmetric. Furthermore, $\sigma(S) = \{1, -1\}$.
- (c) If $R = \begin{pmatrix} 1 & \frac{1}{2}i \\ \frac{1}{2}i & 2 \end{pmatrix}$ on C^2 , then $CR^2C - 2CRC \cdot R + R^2 = \begin{pmatrix} \frac{15}{4} & -\frac{3}{2}i \\ -\frac{3}{2}i & \frac{3}{4} \end{pmatrix} - 2\begin{pmatrix} \frac{9}{4} & 0 \\ 0 & \frac{9}{4} \end{pmatrix} + \begin{pmatrix} \frac{3}{4} & \frac{3}{2}i \\ \frac{3}{2}i & \frac{15}{4} \end{pmatrix} = 0.$

Hence R is [2, C]-symmetric. It is easy to see that R is not [1, C]-symmetric. Moreover, $\sigma(R) = \{\frac{3}{2}\}.$

(d) Let $W = \begin{pmatrix} 2i & 1 \\ 1 & -2i \end{pmatrix}$ on C^2 . Then it is easy to see that $CWC = W \neq W^*$. Hence W is [1, C]-symmetric and $\sigma(W) = \{\sqrt{3}i, -\sqrt{3}i\}$.

Example 3.2. Let $\mathcal{H} = \ell^2$, let $\{e_n\}_{n=1}^{\infty}$ be the natural basis of \mathcal{H} and let $C : \mathcal{H} \longrightarrow \mathcal{H}$ be a conjugation given by

$$C(\sum_{n=1}^{\infty} x_n e_n) = \sum_{n=1}^{\infty} \overline{x_n} e_n$$

where $\{x_n\}$ is a sequence in C with $\sum_{n=1}^{\infty} |x_n|^2 < \infty$ and $Ce_n = e_n$.

- (i) If $U \in B(\mathcal{H})$ is the unilateral shift on ℓ^2 , then it is easy to compute U = CUCand so U is a [1, C]-symmetric operator with $\sigma(U) = \mathbb{D}$ (unit disk).
- (ii) Let W be the weighted shift given by $We_n = \alpha_n e_{n+1}$, where $\alpha_n = \begin{cases} 2i & (n=1) \\ \frac{n+1}{n}i & (n \ge 2). \end{cases}$ Then $(CW^2C - 2CWCW + W^2)e_n = [(\overline{\alpha_n} - \alpha_n)\overline{\alpha_{n+1}} - \alpha_n(\overline{\alpha_{n+1}} - \alpha_{n+1})]e_n$

for all $n \geq 1$. Hence W is [2, C]-symmetric operator.

An operator $A \in \mathcal{L}(\mathcal{H})$ is *n*-Jordan if A = T + N where T is self-adjoint, N is nilpotent of order $[\frac{n+1}{2}]$, and TN = NT where [k] denotes the integer part of k.

Example 3.3. Let C be a conjugation C on \mathcal{H} . Suppose that A = T + N is an *n*-Jordan operator where $T = T^* = CTC$, N is nilpotent of order $[\frac{n+1}{2}]$, TN = NT, and CN = NC. Then A is [n, C]-symmetric for the conjugation C. Indeed, since $T = T^* = CTC$, TN = NT, and CN = NC, it follows that

$$\sum_{j=0}^{n} (-1)^{j} \binom{n}{j} C A^{n-j} C \cdot A^{j} = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} (T+N)^{n-j} \cdot (T+N)^{j} = 0$$

which means that A is an *n*-symmetric operator from [12, Theorem 3.2]. Hence A is [n, C]-symmetric.

4. [m, C]-symmetric Operators

Let C be a conjugation on \mathcal{H} . Then C satisfies ||Cx|| = ||x|| and $C(\alpha x) = \overline{\alpha} \cdot Cx$ for all $x \in \mathcal{H}$ and all $\alpha \in \mathbb{C}$. Moreover, since $C^2 = I$, it follows that $(CTC)^* = CT^*C$ and $(CTC)^n = CT^nC$ for every positive integer n (see [7] for more details).

We now provide properties of [m, C]-symmetric operators.

Theorem 4.1. Let $T \in B(\mathcal{H})$ and let C be a conjugation on \mathcal{H} . Then the following assertions hold;

- (a) T is an [m, C]-symmetric operator if and only if so is T^* .
- (b) If T is an [m, C]-symmetric operator, then T^k is [m, C]-symmetric for any $k \in \mathbb{N}$.
- (c) If T is an [m, C]-symmetric operator and invertible, then T^{-1} is [m, C]-symmetric.
- (d) If T is a [2, C]-symmetric operator, then $\ker(T) \subset \ker(T^2) \bigcap C(\ker(T^2))$.

Proof. (a) Since T is [m, C]-symmetric, it follows that $\alpha_m(T; C) = 0$. Therefore,

$$0 = C(\alpha_m(T;C))^*C = \begin{cases} \alpha_m(T^*;C) & (m \text{ is even}) \\ -\alpha_m(T^*;C) & (m \text{ is odd}). \end{cases}$$

Hence T^* is [m, C]-symmetric. The converse implication holds in a similar way. (b) Note that

$$(a^{k}-b^{k})^{m} = \left((a-b)(a^{k-1}+a^{k-2}b+\dots+b^{k-1})\right)^{m} = \sum_{j=0}^{m(k-1)} \lambda_{j}a^{m(k-1)-j}(a-b)^{m}b^{j},$$

where λ_j are some coefficients (j = 0, ..., m(k - 1)). This implies that

$$\alpha_m(T^k; C) = \sum_{j=0}^{m(k-1)} \lambda_j C T^{m(k-1)-j} C \cdot \alpha_m(T; C) \cdot T^j = 0.$$

Hence T^k is [m, C]-symmetric.

(c) Since T is [m, C]-symmetric, it follows that $\alpha_m(T; C) = 0$ and therefore

$$0 = CT^{-m}C \cdot \alpha_m(T;C) \cdot T^{-m} = \begin{cases} \alpha_m(T^{-1};C) & (m \text{ is even}) \\ -\alpha_m(T^{-1};C) & (m \text{ is odd}). \end{cases}$$

Hence T^{-1} is [m, C]-symmetric.

(d) It is clear $\ker(T) \subset \ker(T^2)$. If T is [2, C]-symmetric and $x \in \ker(T)$, then

$$CT^2Cx = 2CTCTx - T^2x = 0$$

and hence $T^2Cx = 0$. Thus $Cx \in \ker(T^2)$ and so $x \in C(\ker(T^2))$. Hence we get $\ker(T) \subset \ker(T^2) \bigcap C(\ker(T^2))$.

Lemma 4.2. For $T \in B(\mathcal{H})$, a conjugation C, and two complex numbers λ, μ , it holds

$$\alpha_m(T;C) = \sum_{n_1+n_2+n_3=m} (-1)^{n_2} \binom{m}{n_1, n_2, n_3} (CTC - \lambda I)^{n_1} (T - \mu I)^{n_2} (\lambda - \mu)^{n_3}.$$

In particular, for $\lambda \in \mathbb{C}$ we have

(4.1)
$$\alpha_m(T;C) = \sum_{j=0}^m (-1)^j \binom{m}{j} (CTC - \lambda I)^{m-j} (T - \lambda I)^j.$$

Proof. Using the multinomial formula, it holds

$$\begin{aligned} \alpha_m(T;C) &= (y-x)^m \big|_{y=CTC, x=T} \\ &= \left(\left[y-\lambda \right] - \left[x-\mu \right] + \left[\lambda - \mu \right] \right)^m \big|_{y=CTC, x=T} \\ &= \sum_{n_1+n_2+n_3=m} (-1)^{n_2} \binom{m}{n_1, n_2, n_3} (y-\lambda)^{n_1} (x-\mu)^{n_2} (\lambda-\mu)^{n_3} \big|_{y=CTC, x=T} \\ &= \sum_{n_1+n_2+n_3=m} (-1)^{n_2} \binom{m}{n_1, n_2, n_3} (CTC - \lambda I)^{n_1} (T-\mu I)^{n_2} (\lambda-\mu)^{n_3}. \end{aligned}$$

Equation (4.1) follows from $\lambda = \mu$ in the first formula.

By Lemma 2.7 of [3], for $T \in B(\mathcal{H})$ and two complex numbers λ, μ , it holds

$$\beta_m(T) = \sum_{n_1+n_2+n_3=m} (-1)^{n_2} \binom{m}{n_1, n_2, n_3} (T^* - \overline{\mu}I)^{n_1} T^{n_1} \overline{\mu}^{n_2} (T - \lambda I)^{n_2} (\lambda \overline{\mu} - 1)^{n_3}.$$

We investigate properties of spectra of [m, C]-symmetric operators. In [11], S. Jung, E. Ko and J. E. Lee proved the following result.

Proposition 4.3.([11, Lemma 3.21]) If C is a conjugation on \mathcal{H} and $T \in B(\mathcal{H})$, then $\sigma(CTC) = \sigma(T)^*, \sigma_p(CTC) = \sigma_p(T)^*, \sigma_a(CTC) = \sigma_a(T)^*$ and $\sigma_s(CTC) = \sigma_s(T)^*$.

Theorem 4.4. Let $T \in B(\mathcal{H})$ be an [m, C]-symmetric operator where C is a conjugation on \mathcal{H} . Then $\sigma_p(T) = \sigma_p(T)^*, \sigma_a(T) = \sigma_a(T)^*, \sigma_s(T) = \sigma_s(T)^*$ and $\sigma(T) = \sigma(T)^*$.

Proof. Let $z \in \sigma_a(T)$. Then there exists a sequence $\{x_n\}$ of unit vectors such that $(T-z)x_n \to 0 \ (n \to \infty)$. By equation (4.1) it holds

$$\alpha_m(T;C) = \sum_{j=0}^m (-1)^j \binom{m}{j} (CTC - zI)^{m-j} (T - zI)^j.$$

Hence we have $0 = \lim_{n \to \infty} \alpha_m(T; C) x_n = \lim_{n \to \infty} (CTC - z)^m x_n$. Therefore, it is easy to see $z \in \sigma_a(CTC)$. Hence $\sigma_a(T) \subset \sigma_a(CTC)$. Since $\sigma_a(CTC) = \sigma_a(T)^*$ by Proposition 4.3, this means $\sigma_a(T) \subset \sigma_a(T)^*$. Hence $\sigma_a(T)^* \subset \sigma_a(T)^{**} = \sigma_a(T)$ and so $\sigma_a(T) = \sigma_a(T)^*$.

Since T^* is also an [m, C]-symmetric operator by Theorem 4.1, we have $\sigma_a(T^*) = \sigma_a(T^*)^*$. Hence $\sigma_s(T) = \sigma_s(T)^*$ and $\sigma(T) = \sigma_a(T) \cup \sigma_s(T) = \sigma_a(T)^* \cup \sigma_s(T)^* = \sigma(T)^*$. From the above proof it is clear that $\sigma_p(T) = \sigma_p(T)^*$. \Box

For $T, S \in B(\mathcal{H})$, a pair (T, S) of operators is said to be a *C*-doubly commuting pair if TS = ST and $CSC \cdot T = T \cdot CSC$ for a conjugation C.

Lemma 4.5. Let (T, S) be a C-doubly commuting pair where C is a conjugation on \mathcal{H} . Then it holds

(4.2)
$$\alpha_m(T+S;C) = \sum_{j=0}^m \binom{m}{j} \alpha_j(T;C) \cdot \alpha_{m-j}(S;C)$$

Proof. From the assumption, it holds $T \cdot CS^j C = CS^j C \cdot T$ and $S \cdot CT^j C = CT^j C \cdot S$ for every $j \in \mathbb{N}$. It is clear that equation (4.2) holds for m = 1. Assume that equation (4.2) holds for m. Then by (3.1) we have

$$\alpha_{m+1}(T+S;C)$$

$$= C(T+S)C \cdot \alpha_m(T+S;C) - \alpha_m(T+S;C) \cdot (T+S)$$

$$= \sum_{j=0}^m \binom{m}{j} (CTC + CSC) \cdot \alpha_j(T;C) \cdot \alpha_{m-j}(S;C)$$

$$- \sum_{j=0}^m \binom{m}{j} \alpha_j(T;C) \cdot \alpha_{m-j}(S;C) \cdot (T+S)$$

$$= \sum_{j=0}^{m} {m \choose j} \left(CTC \cdot \alpha_j(T;C) - \alpha_j(T;C) \cdot T \right) \alpha_{m-j}(S;C) \\ + \sum_{j=0}^{m} {m \choose j} \alpha_j(T;C) \left(CSC \cdot \alpha_{m-j}(S;C) - \alpha_{m-j}(S;C) \cdot S \right) \\ = \sum_{j=0}^{m} {m \choose j} \alpha_{j+1}(T;C) \cdot \alpha_{m-j}(S;C) + \sum_{j=0}^{m} {m \choose j} \alpha_j(T;C) \cdot \alpha_{m+1-j}(S;C) \\ = \sum_{j=0}^{m+1} {m+1 \choose j} \alpha_j(T;C) \cdot \alpha_{m+1-j}(S;C).$$

Hence equation (4.2) holds for any $m \in \mathbb{N}$.

Therefore we have the following theorem.

Theorem 4.6. Let $T \in B(\mathcal{H})$ be an [m, C]-symmetric operator and let $S \in B(\mathcal{H})$ be an [n, C]-symmetric operator where C is a conjugation on \mathcal{H} . If (T, S) is a C-doubly commuting pair, then T + S is an [m + n - 1, C]-symmetric operator.

Proof. By Lemma 4.5, it holds

$$\alpha_{m+n-1}(T+S;C) = \sum_{j=0}^{m+n-1} {m+n-1 \choose j} \alpha_j(T;C) \cdot \alpha_{m+n-1-j}(S;C).$$

(i) If $0 \le j \le m-1$, then $m+n-1-j \ge m+n-1-(m-1)=n$. Therefore we have

 $\alpha_{m+n-1-j}(S;C) = 0.$

(ii) If
$$j \ge m$$
, then $\alpha_j(T; C) = 0$.

Hence we get $\alpha_{m+n-1}(T+S;C) = 0$ and so T+S is [m+n-1,C]-symmetric. \Box

Theorem 4.7. Let C be a conjugation on \mathcal{H} . If Q is a nilpotent operator of order n, then Q is a [2n - 1, C]-symmetric operator.

Proof. It holds

$$\alpha_{2n-1}(Q;C) = \sum_{j=0}^{2n-1} (-1)^j \binom{2n-1}{j} CQ^{2n-1-j}C \cdot Q^j.$$

(i) If $0 \le j \le n-1$, then $2n-1-j \ge 2n-1-(n-1)=n$. Hence $Q^{2n-1-j}=0$. (ii) If $j \ge n$, then $Q^j = 0$.

Therefore $\alpha_{2n-1}(Q; C) = 0$ and hence Q is [2n-1, C]-symmetric.

Corollary 4.8. Let $T \in B(\mathcal{H})$ be an [m, C]-symmetric operator and let $Q \in B(\mathcal{H})$ be a nilpotent operator of order n where C is a conjugation on \mathcal{H} . If (T, Q) is a C-doubly commuting pair, then T + Q is an [m + 2n - 2, C]-symmetric operator.

Example 4.9. Let C_n be the conjugation on C^n defined by

$$C_n(z_1, z_2, \cdots, z_n) := (\overline{z_1}, \overline{z_2}, \cdots, \overline{z_n}).$$

Assume that R_n is an $n \times n$ matrix as follows;

$$R_n = aI_n + Q_n = \begin{pmatrix} a & 0 & 0 & \cdots & 0 \\ 0 & a & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} + \begin{pmatrix} 0 & b & 0 & \cdots & 0 \\ 0 & 0 & b & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

for $a, b \in C$. Since Q_n is nilpotent of order n, it follows that Corollary 4.8 that R_n is a $[2n-1, C_n]$ -symmetric operator.

Lemma 4.10. If (T, S) is a C-doubly commuting pair where C is a conjugation on \mathcal{H} , then it holds

(4.3)
$$\alpha_m(TS;C) = \sum_{j=0}^m \binom{m}{j} \alpha_j(T;C) \cdot T^{m-j} \cdot CS^j C \cdot \alpha_{m-j}(S;C).$$

Proof. It is easy to see that equation (4.3) holds for m = 1. Assume that equation (4.3) holds for m. Then by (3.1) we obtain

$$\begin{aligned} \alpha_{m+1}(TS;C) \\ &= (CTSC) \cdot \alpha_m(TS;C) - \alpha_m(TS;C) \cdot TS \\ &= CTC \cdot CSC \sum_{j=0}^m \binom{m}{j} \alpha_j(T;C) \cdot T^{m-j} \cdot CS^j C \cdot \alpha_{m-j}(S;C) \\ &- \sum_{j=0}^m \binom{m}{j} \alpha_j(T;C) \cdot T^{m+1-j} \cdot CS^j C \cdot \alpha_{m-j}(S;C) \cdot S \\ &= \sum_{j=0}^m \binom{m}{j} \left(CTC \cdot \alpha_j(T;C) - \alpha_j(T;C) \cdot T \right) T^{m-j} \cdot CS^{j+1} C \cdot \alpha_{m-j}(S;C) \\ &+ \sum_{j=0}^m \binom{m}{j} \alpha_j(T;C) \cdot T^{m+1-j} \cdot CS^j C \cdot \left(CSC \cdot \alpha_{m-j}(S;C) - \alpha_{m-j}(S;C) \cdot S \right) \\ &= \sum_{j=0}^m \binom{m}{j} \alpha_{j+1}(T;C) \cdot T^{m-j} \cdot CS^{j+1} C \cdot \alpha_{m-j}(S;C) \\ &+ \sum_{j=0}^m \binom{m}{j} \alpha_j(T;C) \cdot T^{m+1-j} \cdot CS^j C \cdot \alpha_{m+1-j}(S;C) \\ &= \sum_{j=0}^{m+1} \binom{m+1}{j} \alpha_j(T;C) \cdot T^{m+1-j} \cdot CS^j C \cdot \alpha_{m+1-j}(S;C). \end{aligned}$$

Hence equation (4.3) holds for any $m \in \mathbb{N}$.

Theorem 4.11. Let T be an [m, C]-symmetric operator and let S be an [n, C]-symmetric operator where C is a conjugation on \mathcal{H} . If (T, S) is a C-doubly commuting pair, then TS is an [m + n - 1, C]-symmetric operator.

Proof. Since (T, S) is a C-doubly commuting pair, it follows from equation (4.3) that

$$\alpha_{m+n-1}(TS;C) = \sum_{j=0}^{m+n-1} \binom{m+n-1}{j} \alpha_j(T;C) \cdot T^{m+n-1-j} \cdot CS^j C \cdot \alpha_{m+n-1-j}(S;C).$$

(i) If $0 \le j \le m-1$, then $m+n-1-j \ge m+n-1-(m-1)=n$. Therefore we get $\alpha_{m+n-1-j}(S;C)=0$.

(ii) If $m \leq j$, then $\alpha_j(T; C) = 0$.

Therefore $\alpha_{m+n-1}(TS; C) = 0$. Hence TS is [m+n-1, C]-symmetric. \Box

Corollary 4.12. Let C be a conjugation on \mathcal{H} . If $T = T_1 \oplus I$ and $S = I \oplus S_1$ where T_1 and S_1 are [m, C]-symmetric, then TS is [2m - 1, C]-symmetric.

Proof. Since T_1 and S_1 are [m, C]-symmetric, it follows that $T = T_1 \oplus I$ and $S = I \oplus S_1$ are [m, C]-symmetric. In addition, we know that (T, S) is a C-doubly commuting pair. Therefore, TS is [2m - 1, C]-symmetric by Theorem 4.11. \Box

In [6], B. Duggal proved the following proposition.

Proposition 4.13. Let T and S be an m-isometric operator and an n-isometric operator, respectively. Then $T \otimes S$ is an (m + n - 1)-isometric operator.

Similarly, we show the following result.

Theorem 4.14. Let T be an [m, C]-symmetric operator and let S be an [n, D]-symmetric operator where C and D are conjugations on \mathcal{H} . Then $T \otimes S$ is an $[m + n - 1, C \otimes D]$ -symmetric operator on $\mathcal{H} \otimes \mathcal{H}$.

Proof. Since C and D are conjugations on \mathcal{H} , it follows from [4] that $C \otimes D$ is a conjugation on $\mathcal{H} \otimes \mathcal{H}$. If T is [m, C]-symmetric and S is [n, D]-symmetric, it is easy to see that $T \otimes I$ is $[m, C \otimes D]$ -symmetric and $I \otimes S$ is $[n, C \otimes D]$ -symmetric on $\mathcal{H} \otimes \mathcal{H}$, respectively. Also it is clear that $(T \otimes I, I \otimes S)$ is a $C \otimes D$ -doubly commuting pair. Since $T \otimes S = (T \otimes I)(I \otimes S)$, it follows from Theorem 4.11 that $(T \otimes I)(I \otimes S) = T \otimes S$ is $[m + n - 1, C \otimes D]$ -symmetric.

Acknowledgements. This paper is dedicated to the memory of Professor Takayuki Furuta with cordial appreciation. This is partially supported by Grant-in-Aid Scientific Research No.15K04910. The second author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2016R1A2B4007035).

References

- J. Agler and M. Stankus, *m-isometric transformations of Hilbert space I*, Intgr. Equat. Oper. Theory, **21**(1995), 383–429.
- [2] T. Bermúdes, A. Martinón, V. Müller and A. J. Noda, Perturbation of m-isometries and nilpotent operators, Abstr. Appl. Anal., (2014), Art. ID 745479, 6 pp.
- [3] M. Chō, C. Gu and W. Y. Lee, Elementary properties of ∞-isometries on a Hilbert space, Linear Algebra Appl., 511(2016), 378–402.
- [4] M. Chō, J. E. Lee and H. Motoyoshi, On [m, C]-isometric operators, Filomat, 31(7)(2017), 2073–2080.
- [5] M. Chō, S. Ôta and K. Tanahashi, Invertible weighted shift operators which are misometries, Proc. Amer. Math. Soc. 141(2013), 4241–4247.
- [6] B. Duggal, Tensor product of n-isometries, Linear Algebra Appl., 437(2012), 307– 318.
- [7] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc., 358(2006), 1285–1315.
- [8] C. Gu and M. Stankus, Some results on higher order isometries and symmetries: Products and sums a nilpotent operator, Linear Algebra Appl., 469(2015), 500–509.
- [9] J. W. Helton, Operators with a representation as multiplication by x on a Sobolev space, Proc. Internat. Conference on Operator Theory, Hungary, 1970.
- [10] J. W. Helton, Infinite dimensional Jordan operators and Sturm-Liouville conjugate point theory, Trans. Amer. Math. Soc., 170(1972), 305–331.
- [11] S. Jung, E. Ko and J. E. Lee, On complex symmetric operator matrices, J. Math. Anal. Appl. 406(2013), 373–385.
- [12] S. A. McCullough and L. Rodman, *Hereditary classes of operators and matrices*, Amer. Math. Monthly, **104**(1997), 415–430.
- [13] M. Stankus, m-Isometries, n-symmetries and other linear transformations which are hereditary roots, Integr. Equat. Oper. Theory, 75(2013), 301–321.