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ABSTRACT. In this paper first we show properties of isosymmetric operators given by M.
Stankus [13]. Next we introduce an [m, C]-symmetric operator 7' on a complex Hilbert
space H. We investigate properties of the spectrum of an [m, C]-symmetric operator and
prove that if T is an [m, C]-symmetric operator and @ is an n-nilpotent operator, respec-
tively, then T+ @ is an [m + 2n — 2, C]-symmetric operator. Finally, we show that if T is
[m, C]-symmetric and S is [n, D]-symmetric, then T'® S is [m +n — 1, C ® D]-symmetric.

1. Introduction

Let H be a complex Hilbert space with the inner product (, ) and B(H) be the
set of bounded linear operators on H. Let N be the set of all natural numbers. For
the study of Jordan operators, J.W. Helton ([9] and [10]) introduced an operator
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T € B(H) which satisfies

am(T) = i(—l)j (2”) T*m=iTi =0 (m €N).

=0

In particular, if T is normal, then a,,(T) = (T* — T)™. An operator T € B(H)
is said to be an m-symmetric operator if «,,(T) = 0. Hence T is l-symmetric if
and only if T" is Hermitian. It is well known that if T' is m-symmetric, then T is
n-symmetric for all n > m. The concept of m-symmetric operators is little strong.
For example, if T is m-symmetric, then o(T) C R (cf.[10]). And T is Hermitian
even if T is 2-symmetric. Also if T is normal and m-symmetric, then T is Hermitian
due to the fact that T* — T is normal and nilpotent, that is, T* — T = 0.

Recently, C. Gu and M. Stankus ([8]) showed interesting properties of m-
symmetric operators. On the other hand, for m € N, an operator T' € B(H) is
said to be an m-isometric operator if

Bl) = S (-1 (’7) TemITmi

Jj=0

It is well known that if T' is m-isometric, then T is n-isometric for all n > m. In 1995,
J. Agler and M. Stankus [1] introduced an m-isometric operator and showed many
important results of such an operator. If T is an invertible m-isometric operator
and m is even, then T is (m — 1)-isometric. But if T is m-symmetric and m is even,
then T is always (m — 1)-symmetric by Theorem 3.4 of [12]. For every odd number
m, there exists an invertible m-isometric operator T' which is not (m — 1)-isometric
(see Theorem 1 in [5]).

Throughout this paper, let I be the identity operator on H and m,n be natural
numbers. An operator Q € B(H) is said to be a nilpotent operator of order n if
Q" =0and Q" ! #£ 0. For asubset A C C,let A*={z: 2€ A} Leto(T)
and o,(T) be the spectrum and the point spectrum of T' € B(¥), respectively.
The approximate point spectrum of T is defined by o,(T) := { 2z ¢ C : T —
zI is not bounded below}, and the surjective spectrum of T is defined by o(T') :=
{2z € C:T-=zI is not surjective}. It is known that o(T") = 0, (T)Uos(T), 04(T)* =
os(T*), and o4(T)* = 0,(T*).

2. Isosymmetric Operators
First we show the following result of m-symmetric operators.
Proposition 2.1. Let T € B(H). Then the following statements hold;

(a) T is a 2-symmetric operator if and only if T is Hermitian.

(b) LetT be an m-symmetric operator. For a # b and non-zero vectors z,y € H,
if Te = ax and Ty = by, then (x, y) = 0.
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(¢) Let T be an m-symmetric operator. For a # b and sequences {xy},{yr} of
unit vectors of H, if (T —a)zy — 0 and (T —b)yx, — 0, then klim (T, yk) = 0.
—00

Proof. (a) If T is Hermitian, then it is obvious that T is 2-symmetric. If T is
2-symmetric, then T is 1-symmetric from [12, Theorem 3.4] and so it is Hermitian.
(b) Since a,b € o(T), it follows from [10] that a, b are real numbers. Hence it holds

0= <(Jém(T)$, y> = (b - a)m ’ <$, y>
Since a # b, we have (x, y) = 0.
(¢) By similar arguments of the proof of (b), a,b are real numbers and it holds
0= lim (o (T)xg, yr) = (b—a)™ - lm (zg, yx).
k—o0 k—o0
Since a # b, we have klirn (zk, yr) = 0. ]
— 00

Definition 1. For an operator T' € B(H), we define 7y, »,(T") by

(D) = S (1 (") rmtanmrm - S (1)reamrr

j=0 J k=0
Then T is said to be (m,n)-isosymmetric if 7, ,,(T') = 0.

It is easy to see that

Ym+1,0(T) = T Vi (T)T = Y, (T) and Vi n41(T) = T Ym0 (1) = Yimn (T)T.
Hence if T is (m, n)-isosymmetric, then T is (m’,n’)-isosymmetric for all n’ > n
and n’ > n. M. Stankus proved the following properties.

Proposition 2.2.([13, Corollary 30]) Let T be (m,n)-isosymmetric.

(1) Ifo(T) C{z eR : |zg|>1} oro(T) C{zx €R : |z| <1}, then T is

n-symmetric.

(2) Ifo(T) c{e?® : 0< O <7}ora(l) C{e? : m<0<2n}, thenT is

m-isometric.

For a,b € C and non-zero vectors z,y € I, if Tz = ax, Ty = by, then it holds
that

(Ymm(D)z,y) = (O (1) ") T (T) T ), )
y y ]Z_;) <J) y
= (ab—1)"(a—0)"(z,y).

Hence we have the following theorem.

Theorem 2.3. Let T be (m,n)-isosymmetric and x, y be unit vectors and T, yx
be sequences of unit vectors of H.
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(1) If Tx = ax, Ty =by, a #b and a # b, then (z, y) = 0.
2) If (T —a)zpy — 0,(T—byy — 0 (k — o0),a #band a # b, then
kli_g;(xk, yg) = 0.
Theorem 2.4. Let T be (m,n)-isosymmetric.
(1) Then T* is (m,n)-isosymmetric for any k € N.
(2) If T is invertible, then T is (m,n)-isosymmetric.
Proof. (1) Note that for k € N, the following equation holds;
(y"a® =)™ (" —ab)"

— ((yw—l)(yk_lxk_l +yk—2$k—2+._._~_1))

(y—2) @y a4 )"
m(k—1) n(k—1)

Z Z Aepjym B =byn(k=1)=j (yz —1)" (y - x)”xjxm(kfl)*f
=0 j=0

where A\, and p; are some constants. From this, we have

m(k—1) n(k—1)

'Vm,n(Tk): Z Z /\g’ujT*m(kfl)*EJF”(k*l)*j,Ymm(T)Tjer(k:fl)—é.
=0 j=0

Hence T* is (m,n)-isosymmetric.
(2) Assume that T is invertible. Since

0 = T " W (D) "
= e ()T
=0 J
= Y. < " )T*_"_jan(T)T—”—j
j=0 J
= Z(—l)j ( T )T*_J (T*‘"an(T)T—")T—J
7=0

S -1y ( I ) T3 (an(T™)) - T = ypn(T1) (0 is cven)
Z(*l)]‘ ( i > T (—an(T7H) - T77 = *”Ymm(Til) (m is odd),

it follows that T~ is (m, n)-isosymmetric. O
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Operators T  and S are said to be doubly commutingif T'S = ST and T'S* = S*T
From the equation

((y1 +y2)(z1 +22) = )" (11 + y2) — (21 + 32))"

" n m . . . i
Z Z <]> (z l h) (y1 + yg)lyé(ylxl - 1)h(y1 —1)" 7 (y2 — fﬂz)jfflﬁw

=0 i+l+h=m

if T"and S are doubly commuting, then it holds
(2.1)

@19 =3 Y ( " ) ( O ) (T 4 8% i (T) 0y (S) TS,

7=0i+l+h=m

Theorem 2.5. Let T be (m,n)-isosymmetric and let Q be a nilpotent operator of
order k. If T and Q are doubly commuting, then T + Q is (m+ 2k —2,n+ 2k —1)-
1s0symmetric.

Proof. From equation (2.1), it holds

n+2k—1
n+2k—1 m+ 2k —2
RIS ST SHIED DI A | G
7=0 i+l+h=m+2k—2
(T + Q") Q" Y msar—1-(T) o (Q)T'Q".

(1) If j > 2k or i >k or I > k, then o;(Q) = 0 or Q" = 0 or Q*! = 0, respectively.
(2)Ifj<2k—landi<k—landl<k—1,thenh=m+2k—2—i—1>m and
n —+ 2k — 1 —j >n+ 2k —1— (2]{ - 1) =n, i.e., ’Yh,n-i—2k—1—j(T) = 0.

By (1) and (2) we have Ypqop—2nt2k—1(T + Q) = 0. Therefore T + @ is
(m + 2k — 2,n + 2k — 1)-isosymmetric. O

Note that the equation

(1yez1z2 — 1)™ - (y1y2 — z122)"

m n

3 I U e T R VA S

k=0 j=0

From this, if T and S are doubly commuting, then it holds

m n

(2.2) Ym.n(TS) ZZ( )< )T*J+ Yot (T) - Y1 (S)T* S,

k=0 j=0

Theorem 2.6. Let T be (m,n)-isosymmetric and let S be m’-isometric and n'-
symmetric. If T and S are doubly commuting, then TS is (m+m/ —1,n+n' —1)-
1508ymmetric.
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Proof. From equation (2.2), it holds

m+m’—1n+n’—1
n+n -1 m+m' —1 itk
Ym4m/—1,n+n/— 1 TS Z Z ( )( k )T]

) 777L+77L/—1—k,n+n’—1—j(T) *Vk,j (S) - TkSn=I,

(1) Ifk>m or j >n', then v ;(S) = 0.
2Iftk<m'—landj<n' —1,thenm+m' —1—k>mandn+n' —1—j>mn,
i'ew TYm4m/ —1—k,n+n’—1—j (T) =0.

By (1) and (2) we have ~Ypmtm/—1.ntn'—1(TS) = 0. Hence it completes the
proof. O

For a complex Hilbert space H, let H®H denote the completion of the algebraic
tensor product of H and H endowed a reasonable uniform cross-norm. For operators
T e B(H)and S € B(H), T® S € B(H ® H) denote the tensor product operator
defined by T and S. Note that T® S = (T'@1)(I®S) =1 S)(T ®I).

Theorem 2.7. Let T be (m,n)-isosymmetric and let S be m/-isometric and n'-
symmetric. Then T ® S is (m+m' — 1,n+n’ — 1)-isosymmetric.

Proof. Tt is clear that if T is (m, n)-isosymmetric, then T ® I is (m, n)-isosymmetric
and if S is m/-isometric and n/-symmetric, then I ® S is m’-isometric and n’-
symmetric. Since T'® I and I ® S are doubly commuting, it follows from Theorem
2.6 that T ® S is (m+m’ — 1,n + n’ — 1)-isosymmetric. Hence it completes the
proof. O

3. Conjugation and Example

In this section, we introduce [m, C]-symmetric operators and provide several
examples. An antilinear operator C' on H is said to be a conjugation if C' satisfies
C? =1 and (Cx,Cy) = (y,x) for all x,3y € H. An operator T € B(H) is said to be
complex symmetric if CTC = T* for some conjugation C.

Definition 2. For an operator T € B(H) and a conjugation C, we define the
operator o, (T;C) by

an(T;C) = Z(—l)j (m) cT™ 0 - 17,
i=0 J
An operator T € B(H) is said to be an [m, C|-symmetric operator if a,,, (T; C') = 0.

Hence if T is complex symmetric and [m, C]-symmetric, then T is m-symmetric.
It holds that

(3.1) CTC - ap(T;C) — an(T;C) - T = a1 (T;C).
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Moreover, if T is [m, C]-symmetric, then T is [n, C]-symmetric for every natural
number n (> m) and ker(a,—1(7;C)) (m > 2) is an invariant subspace for 7T'.

x

Example 3.1. Let 7 = C? and let C be a conjugation on J{ given by C (x) = (y)
Y
for z,y € C.

11
(a) T = (1 _
Hence T is [1, C]-symmetric.
Hence, in this case, o(T") = {0} due to the fact that T' is nilpotent.

(b) Let S = <\ZE @) on C2. Then S is not Hermitian and CSC =

(jz» ‘f) and CSC = § # S*. Therefore, S is [1,C]-symmetric. Fur-
thermore, o(S) = {1, —1}.

on C?, then T is not Hermitian and CTC = (i 12.> =T.

1
(¢c) R= (11 2;) on C?, then

2

2

15 _3 9 90
C’RQC—2CRO-R+R2:< Y 32)_2<3 9>+
4

3 3y
4 1) =0
1 2 4

Hence R is [2, C]-symmetric. It is easy to see that R is not [1, C]-symmetric.
Moreover, o(R) = {%}
2i 1
(d) Let W = (1 9
Hence W is [1, C]-symmetric and o(W) = {v/3i, —/3i}.

> on C?. Then it is easy to see that CWC = W # W*.

Example 3.2. Let H = (2 let {e,,}5°; be the natural basis of 3 and let C' : H{ —
H be a conjugation given by

o

CO> anen) = iﬁen
n n=1

=1

(oo}
where {z,} is a sequence in C with Z |z,|? < 0o and Ce,, = e,.

n=1

(i) If U € B(H) is the unilateral shift on £2, then it is easy to compute U = CUC
and so U is a [1, C]-symmetric operator with o(U) = D (unit disk).

(ii) Let W be the weighted shift given by We, = ape,r1, where o, =

2 (n=1)
{ (n>2).

(CW?2C — 20WCW +W?)e, = [(@n — @n)ni1 — (@it — ani1)len
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for all n > 1. Hence W is [2, C]-symmetric operator.

An operator A € L(KH) is n-Jordan if A =T + N where T is self-adjoint, N is

nilpotent of order [%£!], and TN = NT where [k] denotes the integer part of k.

Example 3.3. Let C' be a conjugation C' on H. Suppose that A =T + N is an
n-Jordan operator where T'=T* = CT'C, N is nilpotent of order [%“], TN = NT,
and CN = NC. Then A is [n, C]-symmetric for the conjugation C. Indeed, since
T=T*=CTC, TN = NT, and CN = NC, it follows that

n n

S (1) (7;) CAIC - AV =3 (1) (”) (T +N)" . (T+N) =0

§=0 §=0 J
which means that A is an n-symmetric operator from [12, Theorem 3.2]. Hence A
is [n, C]-symmetric.
4. [m, C]-symmetric Operators

Let C be a conjugation on H. Then C satisfies ||Cz| = ||z| and C(ax) =a-Cx
for all x € 3 and all o € C. Moreover, since C? = I, it follows that (CTC)* =
CT*C and (CTC)™ = CT"C for every positive integer n (see 7] for more details).

We now provide properties of [m, C]-symmetric operators.

Theorem 4.1. Let T € B(H) and let C be a conjugation on H. Then the following
assertions hold;

(a) T is an [m, C|-symmetric operator if and only if so is T*.

(b) If T is an [m,C]-symmetric operator, then T* is [m,C]-symmetric for any
ke N.

(c) If T is an [m,C]-symmetric operator and invertible, then T~ is [m,C]-
symmetric.

(d) If T is a [2,C]-symmetric operator, then ker(T) C ker(T?) (N C(ker(T?)).
Proof. (a) Since T is [m, C]-symmetric, it follows that a.,(T;C) = 0. Therefore,

am (T*;C) (m is even)
0=Can(T;C)*C =
—am (T*;C) (m is odd).

Hence T* is [m, C]-symmetric. The converse implication holds in a similar way.
(b) Note that
m(k—1)
(@ =b5)™ = ((a=b)(a* T +a" b4+ = 7 Njam DI (a—b)",
§=0
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where \; are some coefficients (j =0, ...,m(k — 1)). This implies that

m(k—1)
am (T C) = Y NCT™ D70 a,, (T3 C) - T9 =0,
§=0

Hence T* is [m, C]-symmetric.
(c) Since T is [m, C]-symmetric, it follows that ., (T; C) = 0 and therefore

am(T71C) (m is even)
0=CT™™C a,(T;C)-T™™ =
—ap(T75C) (mis odd).

Hence T~! is [m, C]-symmetric.
(d) Tt is clear ker(T) C ker(T?). If T is [2, C]-symmetric and = € ker(T'), then
CT?Cx =20TCTz — T?x =0

and hence T2Cz = 0. Thus Cx € ker(T?) and so x € C(ker(T?)). Hence we get
ker(T) C ker(T?) (N C (ker(T?)). O

Lemma 4.2. For T € B(H), a conjugation C, and two complex numbers A, p, it
holds

no m 1 n2 ns3
an@i0) = X are(, " NETC - AT - -
nit+ns+nz=m ve

In particular, for X € C we have

m

(4.1) an(T:0) = S (~1y (’;‘) (CTC — NI)™3(T — \I)’.

=0

Proof. Using the multinomial formula, it holds
QA (T; C) = (y - x)m ’y:CTC’, =T

= (ly=A = [z —p] +[A _U})m’yZCTc’z:T

S (N @ 0 00, e

ni+nat+nzy=m

S, M ) ETe AT - -

ni, N2, N
nitnatng=m 112,78

Equation (4.1) follows from A = y in the first formula. |
By Lemma 2.7 of [3], for T € B(H) and two complex numbers A, u, it holds

B0 = (M Y T - A O 1

ni,nNg, N
ni+nz+nz=m 1712, 18

645
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We investigate properties of spectra of [m, C]-symmetric operators. In [11], S. Jung,
E. Ko and J. E. Lee proved the following result.

Proposition 4.3.([11, Lemma 3.21]) If C is a conjugation on H and T € B(H),
then o(CTC) = o(T)*,0,(CTC) = 0,(T)*,0,(CTC) = 0,(T)* and 0s(CTC) =
os(T)*.

Theorem 4.4. Let T € B(H) be an [m,C]-symmetric operator where C is a
congugation on H. Then o,(T) = 0,(T)*,04(T) = 0o(T)*,05(T) = o5(T)* and
o(T)=o(T)*.

Proof. Let z € 0,(T'). Then there exists a sequence {z,} of unit vectors such that
(T — 2)xn, — 0 (n — 00). By equation (4.1) it holds

am(T;C) =Y (—1) (T) (CTC — 2I)™ (T — 2I).

=0

Hence we have 0 = lim, o0 @ (T;C)2y = limy, o0 (CTC — 2)™ x,,. Therefore, it
is easy to see z € 0,(CTC). Hence 0,(T) C 0,(CTC). Since o,(CTC) = 0,(T)*
by Proposition 4.3, this means o,(T) C 0,(T)*. Hence 04(T)* C 0,(T)** = 0,(T)
and so0 04 (T) = o,(T)*.

Since T* is also an [m,C]-symmetric operator by Theorem 4.1, we have
0,(T*) = 04,(T%)*. Hence o4(T) = o05(T)" and o(T) = 0,(T) U 05(T) =
0o(T)* Uos(T)* = o(T)*. From the above proof it is clear that 0,(T) = 0,(T)*. O

For T, S € B(H), a pair (T, S) of operators is said to be a C-doubly commuting
pair if TS = ST and CSC -T =T - CSC for a conjugation C.

Lemma 4.5. Let (T,S) be a C-doubly commuting pair where C' is a conjugation
on H. Then it holds

m

(4.2) am(T+S;C):Z< 1]n )aj(T;C)-am_j(S;C).

J=0

Proof. From the assumption, it holds T-C'S’C = CS/C-T and S-CTIC = CTIC-S
for every j € N. Tt is clear that equation (4.2) holds for m = 1. Assume that
equation (4.2) holds for m. Then by (3.1) we have

am+1(T +5; C)

= C(T+8)Can(T+8;C) = an(T+S;C)-(T+8S)
= Z( Tj” ) (CTC + CSC) - a;(T;C) - oty (S; C)

Jj=0
m

—g( ") oy {TC) s (S50) (T4 5)
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= Z( T ) (cm a;(T; C) — oy (T; C) ~T)amj(S;C)
’;7 ) a;(T; C) (osc O (S3C) = g (S;C) - S)

- Em: 0( 7;‘ )aj+1(T;C) i (S;C) +§m:< : )aj (T5C) - ami1-5(5;C)
+
j

j=0 7=0
m+1 m 1
= ( ) Oéj(T;C) 41 j(S,C)
§=0
Hence equation (4.2) holds for any m € N. O

Therefore we have the following theorem.

Theorem 4.6. Let T € B(H) be an [m, C]-symmetric operator and let S € B(H)
be an [n, C|-symmetric operator where C is a conjugation on H. If (T, S) is a C-
doubly commuting pair, then T + S is an [m 4+ n — 1, C]-symmetric operator.

Proof. By Lemma 4.5, it holds

m+n—1 m+n—
am+n—1(T+S;C): Z < j

j=0

1
) a;(T;C) - amin—1-3(5;C).

HIf0<j<m-—1,thenm+n—1—j>m+n—1—(m—1)=mn. Therefore we
have

anL-l-n—l—j(S; C) =0.

(ii) If j > m, then «;(T;C) = 0.

Hence we get apmin—1(T+S;C) =0and so T+ S is [m +n — 1, C]-symmetric. O

Theorem 4.7. Let C be a conjugation on H. If Q is a nilpotent operator of order
n, then @Q is a [2n — 1, C|-symmetric operator.

Proof. Tt holds

2n—1 9 1
a2n71(Q;C) _ Z (_1>j ( n - ) Can—l—jC . Qj.

§=0 I

() If0<j<n-—1,then2n—1—35>2n—1—(n—1)=mn. Hence Q*>"~177 = 0.
(i) If j > n, then Q7 = 0.

Therefore ag,—1(Q;C) = 0 and hence Q is [2n — 1, C]-symmetric. O
Corollary 4.8. Let T € B(H) be an [m, C]-symmetric operator and let Q € B(H)

be a nilpotent operator of order n where C is a conjugation on H. If (T,Q) is a
C-doubly commuting pair, then T + Q is an [m + 2n — 2, C]-symmetric operator.

Proof. The proof follows from Theorems 4.6 and 4.7. a
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Example 4.9. Let C,, be the conjugation on C™ defined by
Cn(zh 22y 7Zn) = (271357 e 5%)

Assume that R, is an n X n matrix as follows;

a 0 0 --- 0 0 b O 0

0 a 0O -+ 0 0 0 b 0
Rn:aIn+Qn: . --_ '-. '.. E +

0 0 O 0 0 0 0 " b

0 0 O a o o0 o --- 0

for a,b € C. Since @, is nilpotent of order n, it follows that Corollary 4.8 that R,
is a [2n — 1, C},]-symmetric operator.

Lemma 4.10. If (T, 5) is a C-doubly commuting pair where C is a conjugation on
H, then it holds

§=0
Proof. 1t is easy to see that equation (4.3) holds for m = 1. Assume that equation
(4.3) holds for m. Then by (3.1) we obtain
Ozm+1(TS; C)
= (CTSC)-an(TS;C) —an(TS;C)-TS
= ¢rc-cscy < T >aj(:r; C)-T™ 9 .CSC - am_;(S;C)
=0
-> ( T ) o (T;C) - T™ 7. CS°C - am—(S;C) - S
(CTC - (T; C) — (T C) - T> T 7. SO am—(S;C)

j
+>° ( m ) oy (T;C)-T™ 7 .05 C (CSC cm—j(S;C) — am—(S;C) - S)
m
j

.
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Hence equation (4.3) holds for any m € N. O

Theorem 4.11. Let T be an [m, C|-symmetric operator and let S be an [n,C]-
symmetric operator where C is a conjugation on H. If (T,S) is a C-doubly com-
muting pair, then TS is an [m + n — 1, C]-symmetric operator.

Proof. Since (T,S) is a C-doubly commuting pair, it follows from equation (4.3)
that

m+4n—1 m + n— 1
Omin-1(TS;C) = ) ( j

Jj=0

> o (T;0) - T 1. CSIC - amin-1-;(S; C).

(HIfo<j<m-1,thenm+n—1—j>m+n—1—(m—1)=mn. Therefore we
get myn—1—;(5;C) =0.
(ii) If m < j, then o (T;C) = 0.

Therefore ay4n—1(7'S;C) = 0. Hence T'S is [m + n — 1, C]-symmetric. O

Corollary 4.12. Let C be a conjugtion on H. If T =Ty d I and S =1 H S, where
Ty and Sy are [m, C|-symmetric, then T'S is [2m — 1, C|-symmetric.

Proof. Since Ty and S; are [m,C]-symmetric, it follows that 7' = T} @ I and
S =1 S; are [m, C]-symmetric. In addition, we know that (7,.5) is a C-doubly
commuting pair. Therefore, T'S is [2m — 1, C]-symmetric by Theorem 4.11. O

In [6], B. Duggal proved the following proposition.

Proposition 4.13. Let T and S be an m-isometric operator and an n-isometric
operator, respectively. Then T ® S is an (m + n — 1)-isometric operator.

Similarly, we show the following result.

Theorem 4.14. Let T be an [m, C]-symmetric operator and let S be an [n, D]-
symmetric operator where C' and D are conjugations on H. Then T ® S is an
[m +n —1,C ® D]-symmetric operator on H @ H.

Proof. Since C' and D are conjugations on XK, it follows from [4] that C ® D is a
conjugation on H ® H. If T is [m, C]-symmetric and S is [n, D]-symmetric, it is
easy to see that T ® I is [m,C ® D]-symmetric and I ® S is [n,C ® D]-symmetric
on H ® H, respectively. Also it is clear that (T ® I, I ® S) is a C ® D-doubly
commuting pair. Since T ® S = (T'® I)(I ® S), it follows from Theorem 4.11 that
TehHh{IeS)=T®S is [m+n—1,C® D]-symmetric. O

Acknowledgements. This paper is dedicated to the memory of Professor Takayuki
Furuta with cordial appreciation. This is partially supported by Grant-in-Aid Scien-
tific Research No.15K04910. The second author was supported by Basic Science Re-
search Program through the National Research Foundation of Korea(NRF) funded
by the Ministry of Education, Science and Technology(2016R1A2B4007035).

649



650

M. Cho, J. E. Lee, K. Tanahashi and J. Tomiyama

References

J. Agler and M. Stankus, m-isometric transformations of Hilbert space I, Intgr. Equat.
Oper. Theory, 21(1995), 383-429.

T. Bermudes, A. Martinén, V. Miiller and A. J. Noda, Perturbation of m-isometries
and nilpotent operators, Abstr. Appl. Anal., (2014), Art. ID 745479, 6 pp.

M. Cho, C. Gu and W. Y. Lee, Elementary properties of co-isometries on a Hilbert
space, Linear Algebra Appl., 511(2016), 378-402.

M. Chd, J. E. Lee and H. Motoyoshi, On [m, C]-isometric operators, Filomat,
31(7)(2017), 2073-2080.

M. Chs, S. Ota and K. Tanahashi, Invertible weighted shift operators which are m-
isometries, Proc. Amer. Math. Soc. 141(2013), 4241-4247.

B. Duggal, Tensor product of n-isometries, Linear Algebra Appl., 437(2012), 307—
318.

S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans.
Amer. Math. Soc., 358(2006), 1285-1315.

C. Gu and M. Stankus, Some results on higher order isometries and symmetries:
Products and sums a nilpotent operator, Linear Algebra Appl., 469(2015), 500-509.

J. W. Helton, Operators with a representation as multiplication by x on a Sobolev
space, Proc. Internat. Conference on Operator Theory, Hungary, 1970.

J. W. Helton, Infinite dimensional Jordan operators and Sturm-Liouville conjugate
point theory, Trans. Amer. Math. Soc., 170(1972), 305-331.

S. Jung, E. Ko and J. E. Lee, On complex symmetric operator matrices, J. Math.
Anal. Appl. 406(2013), 373-385.

S. A. McCullough and L. Rodman, Hereditary classes of operators and matrices,
Amer. Math. Monthly, 104(1997), 415-430.

M. Stankus, m-Isometries, n-symmetries and other linear transformations which are
hereditary roots, Integr. Equat. Oper. Theory, 75(2013), 301-321.



