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1. Introduction and Preliminaries

The Banach Contraction Principle (BCP) is the most famous elementary result
in the metric fixed point theory. A huge amount of literature contains applications,
generalizations and extensions of this principle carried out by several authors in
different directions, e.g., by weakening the hypotheses, using different setups, con-
sidering various types of mappings and generalized form of metric spaces, see, e.g.,
[2, 6, 7, 10, 12, 14, 15, 18].

In this context, Matthews [12] introduced the notion of a partial metric space as
a part of the study of denotational semantics of data-flow networks. He showed that
BCP can be generalized to the partial metric context for applications in program
verifications. Note that in partial metric spaces, self-distance of an arbitrary point
need not be equal to zero.

Hitzler and Seda [6], resp. Amini-Harandi [2] made a further generalization
under the name of dislocated, resp. metric-like space, also having the property of
“non-zero self-distance”. Amini-Harandi defined σ-completeness of these spaces.
Further, Shukla et al. introduced in [15] the notion of 0-σ-complete metric-like
space and proved some fixed point theorems in such spaces, as improvements of
Amini-Harandi’s results.

We recall some definitions and facts which will be used throughout the paper.

Definition 1.1.([2]) A mapping σ : X × X → R+, for a nonempty set X, is called
metric-like if, for all x, y, z ∈ X,

(σ1) σ(x, y) = 0⇒ x = y;

(σ2) σ(x, y) = σ(y, x);

(σ3) σ(x, y) ≤ σ(x, z) + σ(z, y).

In this case, the pair (X, σ) is called a metric-like space.

Example 1.2.([2]) Let X = {0, 1} and σ : X× X→ R+ be defined by

σ(x, y) =

{
2, if x = y = 0,

1, otherwise.

Then (X, σ) is a metric-like space, but it is neither a metric space nor a partial
metric space, since σ(0, 0) > σ(0, 1).

Example 1.3.([14]) Let X = R. Then the mappings σi : X×X→ R+ (i ∈ {1, 2, 3}),
defined by

σ1(x, y) = |x|+ |y|+ a, σ2(x, y) = |x− b|+ |y − b|, σ3(x, y) = x2 + y2,

where a ≥ 0 and b ∈ R, are metric-like on X.

Definition 1.4.([2, 15]) Let (X, σ) be a metric-like space. Then:
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(1) A sequence {xn} in X converges to a point x ∈ X (denoted as xn → x as
n → ∞) if limn→∞ σ(xn, x) = σ(x, x). A sequence {xn} is said to be σ-
Cauchy if limn,m→∞ σ(xn, xm) exists and is finite. The space (X, σ) is called
σ-complete if for each σ-Cauchy sequence {xn}, there exists x ∈ X such that

lim
n→∞

σ(xn, x) = σ(x, x) = lim
n,m→∞

σ(xn, xm).

(2) A sequence {xn} in (X, σ) is called a 0-σ-Cauchy sequence if
limn,m→∞ σ(xn, xm) = 0. The space (X, σ) is said to be 0-σ-complete if every
0-σ-Cauchy sequence in X converges to a point x ∈ X such that σ(x, x) = 0.

(3) A mapping f : X→ X is σ-continuous, if xn → x as n→∞ in (X, σ) implies
that fxn → fx as n→∞.

It is easy to show (e.g., [2]) that the limit of a sequence in a metric-like space
might not be unique.

Lemma 1.5.([9]) Let (X, σ) be a metric-like space.

(a) If x, y ∈ X then σ(x, y) = 0 implies that σ(x, x) = σ(y, y) = 0.

(b) If a sequence {xn} in X converges to some x ∈ X with σ(x, x) = 0 then
limn→∞ σ(xn, y) = σ(x, y) for all y ∈ X.

It is clear that if a metric-like space is σ-complete, then it is 0-σ-complete [15].
The converse assertion does not hold as the following example shows.

Example 1.6.([15]) Let X = [0, 1) ∩Q and σ : X× X→ R+ be defined by

σ(x, y) =

{
2x, if x = y,

max{x, y}, otherwise,

for all x, y ∈ X . Then (X, σ) is a metric-like space. It is easy to see that (X, σ) is
a 0-σ-complete metric-like space, while it is not a σ-complete metric-like space.

In the paper [18], Wardowski introduced a new type of contractions which he
called F -contractions. Several authors proved various variants of fixed point results
using such contractions. In Wardowski’s approach, the following set of functions is
used:

Definition 1.7. Denote by F the family of all functions F : R+ → R with the
following properties:

(F1) F is strictly increasing;

(F2) for each sequence {tn} of positive numbers,

lim
n→∞

tn = 0 if and only if lim
n→∞

F (tn) = −∞.
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(F3) There exists k ∈ (0, 1) such that limt→0+ tkF (t) = 0.

Example 1.8.([18]) Let Fi : R+ → R (i ∈ {1, 2, 3, 4}) be defined by F1(t) = ln t,
F2(t) = t + ln t, F3(t) = −1/

√
t, F4(t) = ln(t2 + t). Then each Fi satisfies the

properties (F1)–(F3).

Definition 1.9.([18]) Let (X, d) be a metric space. A self-mapping f on X is called
an F -contraction if there exist F ∈ F and τ ∈ R+ such that

(1.1) τ + F (d(fx, fy)) ≤ F (d(x, y)),

for all x, y ∈ X with d(fx, fy) > 0.

Note that, taking F ∈ F defined by F (t) = ln t, the relation (1.1) reduces to

d(fx, fy) ≤ e−τd(x, y), x 6= y,

i.e., such mapping is a (Banach-type) contraction. However, other functions F ∈ F
may produce new concepts (see the respective examples in [18]). Hence, the notion
of F -contraction is more general than the notion of contraction.

Contraction-type mappings have been also generalized in other directions. In
the series of generalizations, Samet et al. [13] introduced the concept of α-admissible
maps and gave the concept of α-ψ-contractive mapping, thus generalizing BCP.
Hussain et al. [7] mixed both these concepts and introduced α-GF -contraction and
obtained some interesting fixed point results. Following this direction of research,
Gopal et al. [5] introduced the concept of α-type F -contractive mappings and gave
relevance to fixed point and periodic point theorems, as well as an application to
nonlinear fractional differential equations. Some other related work can be seen in
[1, 8].

With the above discussion in mind, we introduce in this paper the notion of α-
type rational F -contractive mapping in a metric-like space and derive some fixed and
common fixed point results. Further, we give some examples and counterexamples
to illustrate the applicability and effectiveness of the results compared with existing
results in metric spaces. In the next section, we present an application to a certain
class of integral equations. We consider also an integral equation arising in the
theory of nonlinear fractional differential equations and verify it numerically.

2. Discussion on Fixed Point Results

Recently, Sintunavarat [16] introduced the notion of weakly α-admissible map
and discussed respective fixed point results in metric spaces.

Definition 2.1. For a nonempty set X, let α : X × X → [0,∞) and f : X → X be
two mappings. Then f is said to be:

(1) [13] α-admissible if:

x, y ∈ X with α(x, y) ≥ 1⇒ α(fx, fy) ≥ 1.
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(2) [16] weakly α-admissible if:

x ∈ X with α(x, fx) ≥ 1⇒ α(fx, ffx) ≥ 1.

Example 2.2. Let X = [0,∞). Define mappings f : X→ X and α : X×X→ [0,∞)
by

α(x, y) =

{
ex+y, x, y ∈ [0, 1]

ln(2x+ y), otherwise,
and f(x) =

{
2 tanh

(
3x
2

)
, if x ∈ [0, 1]

ln 3x, otherwise.

It is easy to see that f is not an α-admissible mapping, however, it is weakly α-
admissible.

In what follows, we use the following terminology from the paper [17]. For a
nonempty set X and a mapping α : X×X→ [0,∞), we use A(X, α) and WA(X, α)
to denote the collection of all α-admissible mappings on X and the collection of all
weakly α-admissible mappings on X, respectively. Obviously,

A(X, α) ⊂WA(X, α)

and, by the previous example, the inclusion can be strict.
We introduce now the notion of α-type rational F -contraction in a metric-like

space as follows.

Definition 2.3. Let (X, σ) be a metric-like space and α : X × X → [0,∞). A self-
mapping f on X is called an α-type rational F -contraction, if there exist F ∈ F and
τ ∈ R+ such that

u, v ∈ X with α(u, v) ≥ 1 and σ(fu, fv) > 0 implies(2.1)

τ + F (σ(fu, fv)) ≤ F (∆f (u, v)) ,

where

(2.2) ∆f (u, v) = max

{
σ(u, v), σ(u, fu), σ(v, fv), σ(u,fv)+σ(v,fu)

4 ,
σ(u,fu)σ(v,fv)

1+σ(u,v) , σ(u,fu)σ(v,fv)
1+σ(fu,fv)

}
.

We denote by Υ(X, α,F) the collection of all α-type rational F -contractive mappings
on (X, σ).

If we take F (t) = ln t and τ = ln( 1
λ ), where λ = (0, 1), we see that every α-type

rational contraction is also an α-type rational F -contraction in a metric-like space.
However, for other functions F ∈ F, new conditions can be obtained (see further
Remark 2.7).

We are equipped now to state our first main result.

Theorem 2.4. Let (X, σ) be a 0-σ-complete metric-like space and let α : X× X→
[0,∞) and f : X → X be given mappings. Suppose that the following conditions
hold:
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(AF1) f ∈ Υ(X, α,F) ∩WA(X, α);

(AF2) there exists u0 ∈ X such that α(u0, fu0) ≥ 1;

(AF3) α has a transitive property, that is, for u, v, w ∈ X,

α(u, v) ≥ 1 and α(v, w) ≥ 1⇒ α(u,w) ≥ 1;

(AF4) f is σ-continuous.

Then f has a fixed point u∗ ∈ X such that σ(u∗, u∗) = 0.

Proof. Starting from the given u0 ∈ X satisfying α(u0, fu0) ≥ 1, define a sequence
{un} in X by un+1 = fun for n ∈ N∗ = N ∪ {0}. If there exists n0 ∈ N∗ such that
un0

= un0+1, then un0
∈ Fix(f) and hence the proof is completed. Hence, we will

assume that un 6= un+1 for all n ∈ N∗ and let %n = σ(un, un+1) for n ∈ N∗. Then
%n > 0 for all n ∈ N∗. We will prove that limn→∞ %n = 0.

Using that f ∈WA(X, α) and α(u0, fu0) ≥ 1, we have

α(u1, u2) = α(fu0, ffu0) ≥ 1.

Repeating this process, we obtain

α(un+1, un+2) ≥ 1, ∀n ∈ N∗.

It follows from f ∈ Υ(X, α,F) that

τ + F (%n) = τ + F (σ(xn+1, xn)) = τ + F (σ(fxn, fxn−1))

(2.3)

≤ F

max


σ(xn, xn−1), σ(xn, fxn), σ(xn−1, fxn−1),

σ(xn,fxn−1)+σ(xn−1,fxn)
4 , σ(xn,fxn)σ(xn−1,fxn−1)

1+σ(xn,xn−1) ,
σ(xn,fxn)σ(xn−1,fxn−1)

1+σ(fxn,fxn−1)




= F

max


σ(xn, xn−1), σ(xn, xn+1), σ(xn−1, xn),

σ(xn,xn)+σ(xn−1,xn+1)
4 , σ(xn,xn+1)σ(xn−1,xn)

1+σ(xn,xn−1) ,
σ(xn,xn+1)σ(xn−1,xn)

1+σ(xn+1,xn)




≤ F
(

max

{
σ(xn, xn−1), σ(xn, xn+1),

3σ(xn, xn+1) + σ(xn−1, xn)

4

})
≤ F

(
max {σ(xn, xn−1), σ(xn, xn+1)}

)
≤ F

(
max {%n−1, %n}

)
.

If %n−1 ≤ %n for some n ∈ N, then from (2.3) we have τ + F (%n) ≤ F (%n), which
is a contradiction since τ > 0. Thus %n−1 > %n for all n ∈ N and so from (2.3) we
have

F (%n) ≤ F (%n−1)− τ.
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Therefore we derive

F (%n) ≤ F (%n−1)− τ ≤ F (%n−2)− 2τ ≤ · · · ≤ F (%0)− nτ for all n ∈ N,

that is,

F (%n) ≤ F (%0)− nτ for all n ∈ N.(2.4)

From (2.4), we get F (%n)→ −∞ as n→∞. Thus, from (F2), we have

lim
n→∞

%n = 0.(2.5)

Now by the property (F3), there exists k ∈ (0, 1) such that

(2.6) lim
n→∞

(%n)kF (%n) = 0.

By (2.6), the following holds for all n ∈ N:

(2.7) (%n)kF (%n)− (%n)kF (%0) ≤ (%n)k(−nτ) ≤ 0.

Passing to the limit as n→∞ in (2.7), and using (2.5)–(2.6) we obtain

(2.8) lim
n→∞

n(%n)k = 0.

From (2.8), there exits n1 ∈ N such that n(%n)k ≤ 1 for all n ≥ n1. So, we have,
for all n ≥ n1

(2.9) %n ≤
1

n1/k
.

In order to show that {xn} is a 0-σ-Cauchy sequence, consider m,n ∈ N such that
m > n ≥ n1. Using the property (σ3) and (2.9), we have

σ(xn, xm) ≤ σ(xn, xn+1) + σ(xn+1, xn+2) + · · ·+ σ(xm−1, xm)

= %n + %n+1 + · · ·+ %m−1

=

m−1∑
i=n

%i ≤
∞∑
i=n

%i ≤
∞∑
i=n

1

n1/k
.

By the convergence of the series
∑∞
n=1

1
n1/k , passing to the limit as n→∞, we get

σ(xn, xm) → 0 and hence {xn} is a 0-σ-Cauchy sequence in (X, σ). Since X is a
0-σ-complete metric-like space, there exists a u∗ ∈ X such that

(2.10) lim
n,m→∞

σ(xn, xm) = lim
n→∞

σ(xn, u
∗) = σ(u∗, u∗) = 0.

Now, since f is σ-continuous, we obtain from (2.10) that

lim
n,m→∞

σ(fxn, fu
∗) = lim

n→∞
σ(xn+1, fu

∗) = σ(u∗, fu∗) = 0.

This proves that u∗ is a fixed point of f such that σ(u∗, u∗) = 0. 2
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We note that the previous result can still be valid for f not necessarily σ-
continuous. We have the following result.

Theorem 2.5. Let (X, σ) be a 0-σ-complete metric-like space, let α : X × X →
[0,∞), and f : X → X be given mappings. Suppose that the assumptions (AF1)–
(AF3) of Theorem 2.4 hold, as well as:

(AF4′) F is continuous;

(AF5) X is α-regular, i.e., if {un} is a sequence in X with α(un, un+1) ≥ 1 for n ∈ N
and un → u∗ as n→∞, then α(un, u

∗) ≥ 1 for n ∈ N.

Then f has a fixed point u∗ ∈ X such that σ(u∗, u∗) = 0.

Proof. Following the proof of Theorem 2.4, we obtain a 0-σ-Cauchy sequence {un}
in the 0-σ-complete metric-like space (X, σ). Hence, there exists u∗ ∈ X such that

lim
n→∞

σ(un, u
∗) = σ(u∗, u∗) = 0.

We have to prove that fu∗ = u∗. Assume, to the contrary, that u∗ 6= fu∗. In
this case, there exist an n0 ∈ N and a subsequence {unk

} of {un} such that
σ(funk

, fu∗) > 0 for all nk ≥ n0. (Otherwise, there exists n1 ∈ N such that
un = fu∗ for all n ≥ n1, which implies that un → fu∗. This is a contradiction,
since u∗ 6= fu∗.) By α-regularity of X, we have α(un, u

∗) ≥ 1 for all n ∈ N. Since
σ(funk

, fu∗) > 0 for all nk ≥ n0, then from (2.1), we have

τ + F (σ(unk+1, fu
∗))

= τ + F (σ(funk
, fu∗))

≤ F

(
max

{
σ(unk

, u∗), σ(unk
, funk

), σ(u∗, fu∗),
σ(unk

,fu∗)+σ(u∗,funk
)

4 ,
σ(unk

,funk
)σ(u∗,fu∗)

1+σ(unk
,u∗) ,

σ(unk
,funk

)σ(u∗,fu∗)

1+σ(funk
,fu∗)

})

= F

(
max

{
σ(unk

, u∗), σ(unk
, unk+1), σ(u∗, fu∗),

σ(unk
,fu∗)+σ(u∗,unk+1)

4 ,
σ(unk

,unk+1)σ(u∗,fu∗)

1+σ(unk
,u∗) ,

σ(unk
,unk+1)σ(u∗,fu∗)

1+σ(unk+1
,fu∗)

})
.

Passing to the limit as k → ∞ and using the continuity of F we have τ +
F (σ(u∗, fu∗)) ≤ F (σ(u∗, fu∗)), a contradiction. Therefore the claim is true, that
is u∗ = fu∗ with σ(u∗, u∗) = 0. 2

To ensure the uniqueness of the fixed point, we will consider the following
hypothesis.

(H0): For all x, y ∈ Fix(f), α(x, y) ≥ 1.

Theorem 2.6. Adding condition (H0) to the hypotheses of Theorem 2.4 (respec-
tively, Theorem 2.5) then fu∗ = u∗, fv∗ = v∗ and σ(u∗, u∗) = σ(v∗, v∗) = 0 imply
that u∗ = v∗.

Proof. Suppose that fu∗ = u∗, fv∗ = v∗, σ(u∗, u∗) = σ(v∗, v∗) = 0, and, to the
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contrary, u∗ 6= v∗, hence σ(u∗, v∗) > 0. By the assumption, we can replace u by u∗

and v by v∗ in the condition (2.1), and we get

τ + F (σ(u∗, v∗)) = τ + F (σ(fu∗, fv∗))

≤ F

(
max

{
σ(u∗, v∗), σ(u∗, fu∗), σ(v∗, fv∗), σ(u∗,fv∗)+σ(v∗,fu∗)

4 ,
σ(u∗,fu∗)σ(v∗,fv∗)

1+σ(u∗,v∗) , σ(u∗,fu∗)σ(v∗,fv∗)
1+σ(fu∗,fv∗)

})
≤ F

(
max

{
σ(u∗, v∗), σ(u∗,v∗)

2

})
= F (σ(u∗, v∗))

a contradiction, which implies that u∗ = v∗. 2

Remark 2.7. Taking various concrete functions F ∈ F in the condition (2.1) of
Theorems 2.4–2.6, we can get various α-type rational F -contractive conditions. We
state just a few examples (recall that ∆f (u, v) is defined in (2.2)).

(I) Taking F (t) = ln t (t > 0) and τ = ln( 1
λ ), where λ ∈ (0, 1), we have the

condition

u, v ∈ X with α(u, v) ≥ 1 and σ(fu, fv) > 0 implies(2.11)

σ(fu, fv) ≤ λ∆f (u, v).

(II) Taking F (t) = ln t + t (t > 0) and τ = ln( 1
λ ), where λ ∈ (0, 1), we have the

condition

u, v ∈ X with α(u, v) ≥ 1 and σ(fu, fv) > 0 implies(2.12)

σ(fu, fv)eσ(fu,fv)−∆f (u,v) ≤ λ∆f (u, v).

(III) Taking F (t) = − 1√
t

(t > 0), the condition is

u, v ∈ X with α(u, v) ≥ 1 and σ(fu, fv) > 0 implies(2.13)

σ(fu, fv) ≤ 1

(1 + τ
√

∆f (u, v))2
∆f (u, v),

(IV) Taking F (t) = ln(t2 + t) (t > 0) and τ = ln( 1
λ ), where λ > 0, we have

u, v ∈ X with α(u, v) ≥ 1 and σ(fu, fv) > 0 implies

σ(fu, fv)[σ(fu, fv) + 1] ≤ λ∆f (u, v)[∆f (u, v) + 1].

The following examples can be used to illustrate the usage of Theorems 2.4–2.6.

Example 2.8. (This example demonstrates the use of rational terms in the con-
tractive condition.)
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Let X = {a, b, c} and σ : X× X→ [0,+∞) be given by

σ(a, a) = 0, σ(b, b) = 3, σ(c, c) = 9,

σ(a, b) = σ(b, a) = 9, σ(a, c) = σ(c, a) = 5, σ(b, c) = σ(c, b) = 8.

Then (X, σ) is a 0-σ-complete metric-like space. Define α : X × X → [0,+∞) and
f : X→ X by

α(u, v) = 1 for all u, v ∈ X, f =

(
a b c
a c a

)
.

Moreover, take τ = ln(8/5) and F ∈ F defined by F (t) = ln t. Then it is easy to see
that all the conditions of Theorem 2.6 are fulfilled—just the condition f ∈ Υ(X, α,F)
needs to be checked. In this case it reduces to

(2.14) σ(fu, fv) ≤ 5

8
∆f (u, v)

for all u, v ∈ X with σ(fu, fv) > 0, where ∆f (u, v) is defined by (2.2). Only the
following three cases have to be considered:
Case 1: u = a, v = b. Then σ(fu, fv) = σ(a, c) = 5 and

∆f (u, v) = max

{
σ(a, b), σ(a, a), σ(b, c), σ(a,c)+σ(b,a)

4 ,
σ(a,a)σ(b,c)

1+σ(a,b) , σ(a,a)σ(b,c)
1+σ(a,c)

}
= max{9, 0, 8, 7

2 , 0, 0} = 9.

Hence, (2.14) reduces to 5 ≤ 5
8 · 9.

Case 2: u = b, v = b. Then σ(fu, fv) = σ(c, c) = 9 and

∆f (u, v) = max

{
σ(b, b), σ(b, c), σ(b, c), σ(b,c)+σ(b,c)

4 ,
σ(b,c)σ(b,c)

1+σ(b,b) , σ(b,c)σ(b,c)
1+σ(c,c)

}
= max{3, 8, 8, 4, 16, 32

5 } = 16.

Hence, (2.14) reduces to 9 ≤ 5
8 · 16. (Note that, in this case, the condition would

not hold without the rational terms in ∆f .)
Case 3: u = b, v = c. Then σ(fu, fv) = σ(c, a) = 5 and

∆f (u, v) = max

{
σ(b, c), σ(b, c), σ(c, a), σ(b,a)+σ(c,c)

4 ,
σ(b,c)σ(c,a)

1+σ(b,c) , σ(b,c)σ(c,a)
1+σ(c,a)

}
= max{8, 8, 5, 9

2 ,
40
9 ,

20
3 } = 8.

Hence, (2.14) reduces to 5 ≤ 5
8 · 8.

Thus, all the conditions of Theorem 2.6 are satisfied and the mapping f has a
unique fixed point (which is u∗ = a).
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Example 2.9. (This example demonstrates the advantage of using a metric-like
instead of a standard metric; it is inspired by [11, Example 6]. Also, it shows the
advantage of using α-type conditions, since fewer cases need to be checked.)

Let X = {0, 1, 2, 3} be equipped with σ : X × X → [0,+∞) given by σ(u, v) =
u+ v. Then (X, σ) is a 0-σ-complete metric-like space. Define α : X×X→ [0,+∞)
and f : X→ X by

α(u, v) =

{
1, (u, v) ∈ {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 2), (0, 2)}
0, otherwise,

f =

(
0 1 2 3
0 0 1 2

)
.

Moreover, take τ = ln(3/2) and F ∈ F defined by F (t) = ln t. Then it is easy to see
that all the conditions of Theorem 2.6 are fulfilled—just the condition f ∈ Υ(X, α,F)
needs to be checked. In this case it reduces to

(2.15) σ(fu, fv) ≤ 2

3
∆f (u, v)

for all u, v ∈ X with σ(fu, fv) > 0, where ∆f (u, v) is defined by (2.2). Only the
following four cases have to be considered:
Case 1: u = 0, v = 2. Then σ(fu, fv) = σ(0, 1) = 1 and

∆f (u, v) = max

{
σ(0, 2), σ(0, 0), σ(2, 1), σ(0,1)+σ(2,0)

4 ,
σ(0,0)σ(2,1)

1+σ(0,2) , σ(0,0)σ(2,1)
1+σ(0,1)

}
= max{2, 0, 3, 3

4 , 0, 0} = 3.

Hence, (2.15) reduces to 1 ≤ 2
3 · 3.

Case 2: u = 1, v = 2. Then σ(fu, fv) = σ(0, 1) = 1 and

∆f (u, v) = max

{
σ(1, 2), σ(1, 0), σ(2, 1), σ(1,1)+σ(0,2)

4 ,
σ(1,0)σ(2,1)

1+σ(1,2) , σ(1,0)σ(2,1)
1+σ(0,1)

}
= max{3, 1, 3, 1, 3

4 ,
3
2} = 3.

Hence, (2.15) reduces to 1 ≤ 2
3 · 3.

Case 3: u = 2, v = 2. Then σ(fu, fv) = σ(1, 1) = 2 and

∆f (u, v) = max

{
σ(2, 2), σ(2, 1), σ(2, 1), σ(2,1)+σ(1,2)

4 ,
σ(2,1)σ(2,1)

1+σ(2,2) , σ(2,1)σ(2,1)
1+σ(1,1)

}
= max{4, 3, 3, 3

2 ,
9
5 , 3} = 4.

Hence, (2.15) reduces to 2 ≤ 2
3 · 4.
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Case 4: u = 3, v = 3. Then σ(fu, fv) = σ(2, 2) = 4 and

∆f (u, v) = max

{
σ(3, 3), σ(3, 2), σ(3, 2), σ(3,2)+σ(2,3)

4 ,
σ(3,2)σ(3,2)

1+σ(3,3) , σ(3,2)σ(3,2)
1+σ(2,2)

}
= max{6, 5, 5, 5

2 ,
25
7 , 5} = 6.

Hence, (2.15) reduces to 4 ≤ 2
3 · 6.

Thus, all the conditions of Theorem 2.6 are satisfied and the mapping f has a
unique fixed point (which is u∗ = 0).

Consider now the same example, but using the standard metric d(u, v) = |u−v|
instead of σ on X. Then, e.g., for u = 1, v = 2 we get

d(f1, f2) = d(0, 1) = 1 6≤ λ = λmax{1, 1, 1, 1
2 ,

1
2 ,

1
2}

= λmax

{
d(1, 2), d(1, 0), d(2, 1), d(1,1)+d(0,2)

4 ,
d(1,0)d(2,1)

1+d(1,2) , d(1,0)d(2,1)
1+d(0,1)

}
,

whatever λ < 1 is chosen.

Example 2.10. (This example, inspired by [18, Example 2.5] and [1, Example 22],
shows the reason for using various functions F ∈ F—it cannot be treated by the
simplest example F (t) = ln t.)

Let X = {x0, x1, . . . , xn . . . }, where x0 = 0 and xn =
∑n
k=1 k for n ∈ N. Define

a metric-like σ on X by

σ(u, v) = max{u, v}+ |u− v|.

Then (X, σ) is a 0-σ-complete metric-like space. Consider the mappings α : X×X→
[0,+∞) and f : X→ X given by

α(u, v) = 1 for all u, v ∈ X,

fx0 = x0, fxn = xn−1 for n ∈ N.

Take τ = e−1 and F ∈ F given by F (t) = t+ ln t. Then the conditions of Theorem
2.6 are fulfilled—just the contractive condition has to be checked. In this case, it
takes the form (see (2.12))

σ(fu, fv)

∆f (u, v)
eσ(fu,fv)−∆f (u,v) ≤ e−1,

for u, v ∈ X with σ(fu, fv) > 0, where ∆f (u, v) is defined in (2.2). Since ∆f (u, v) ≥
σ(u, v), this is a consequence of

(2.16)
σ(fu, fv)

σ(u, v)
eσ(fu,fv)−σ(u,v) ≤ e−1,

for σ(fu, fv) > 0. In order to prove (2.16), consider the following two cases.
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Case 1: u = x0, v = xn, n ≥ 2. Then fu = x0, fv = xn−1 and

σ(fu, fv)

σ(u, v)
eσ(fu,fv)−σ(u,v) =

σ(x0, xn−1)

σ(x0, xn)
eσ(x0,xn−1)−σ(x0,xn)

=
xn−1

xn
e2(xn−1−xn) < e−2n < e−1.

Case 2: u = xm, v = xn, 1 ≤ m ≤ n. Then

σ(fu, fv)

σ(u, v)
eσ(fu,fv)−σ(u,v) =

σ(xm−1, xn−1)

σ(xm, xn)
eσ(xm−1,xn−1)−σ(xm,xn)

=
xn−1 + (xn−1 − xm−1)

xn + (xn − xm)
exn−1+(xn−1−xm−1)−xn−(xn−xm).

Now,

xn + (xn − xm) =

n∑
k=1

k + [(m+ 1) + (m+ 2) + · · ·+ n]

>

n−1∑
k=1

k + n+ [m+ (m+ 1) + · · ·+ (n− 1)]

= xn−1 + (xn−1 − xm−1) + n.

Hence,
σ(fu, fv)

σ(u, v)
eσ(fu,fv)−σ(u,v) < e−n < e−1.

Therefore, all the conditions of Theorem 2.6 are satisfied, and f has a unique
fixed point (which is u∗ = 0).

The same conclusion cannot be obtained if the simplest function F (t) = ln t
from F is used, because the Banach-type condition (2.11) is not fulfilled. Indeed,
putting u = x0 = 0 and v = xn, n ≥ 2 in (2.11), we obtain σ(0, xn−1) ≤ λσ(0, xn),
which immediately reduces to

(n− 1)n

2
≤ λ n(n+ 1)

2
,

i.e., n−1
n+1 ≤ λ, for each n ≥ 2. Letting n → ∞, this implies λ ≥ 1, hence (2.11)

cannot hold for any λ < 1.

3. Discussion on Common Fixed Point Results

In order to complete the results, we first need the following notion.

Definition 3.1.([3]) For a nonempty set X, let f, g : X→ X and α : X×X→ [0,∞)
be mappings. We say that (f, g) is a generalized α-admissible pair if for all u, v ∈ X,
we have

(3.1) α(u, v) ≥ 1⇒ α(fu, gv) ≥ 1 and α(gfu, fgv) ≥ 1.
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We use GA(X, α) to denote the collection of all generalized α-admissible pairs (f, g).

Remark 3.2. If the operator f is invertible such that f = f−1 with g = f in
Definition 3.1, we get Definition 2.1.(i). So the class of mappings given in Definition
3.1 is not empty.

If f is α-admissible, it is obvious that (f, f) is a generalized α-admissible pair.

Now we introduce the notion of rational α-type F -contractive pair in a metric-
like space.

Definition 3.3. Let (X, σ) be a metric-like space and α : X × X → [0,∞) be
a mapping. Two self-mappings f, g on X are said to form a rational α-type F -
contractive pair, if there exist F ∈ F, τ ∈ R+ such that

u, v ∈ X with α(u, v) ≥ 1 and σ(fu, gv) > 0 implies(3.2)

τ + F (σ(fu, gv)) ≤ F

(
max

{
σ(u, v), σ(u, fu), σ(v, gv), σ(u,gv)+σ(v,fu)

4 ,
σ(u,fu)σ(v,gv)

1+σ(u,v) , σ(u,fu)σ(v,gv)
1+σ(fu,gv)

})
.

We denote by Γ(X, α,F) the collection of all rational α-type F -contractive pairs on
(X, σ).

We are equipped now to state the first result of this section.

Theorem 3.4. Let (X, σ) be a 0-σ-complete metric-like space and let α : X× X→
[0,∞), and f, g : X → X be given mappings. Suppose that the following conditions
hold:

(F1) (f, g) ∈ Γ(X, α,F) ∩ GA(X, α);

(F2) there exists u0 ∈ X such that α(u0, fu0) ≥ 1;

(F3) α(gfu, gu) ≥ 1 for all u ∈ X;

(F4) f and g are σ-continuous.

Then there exists u∗ ∈ X such that

(3.3) σ(u∗, fu∗) = σ(fu∗, fu∗), σ(u∗, gu∗) = σ(gu∗, gu∗) and σ(u∗, u∗) = 0.

Proof. By the given condition (F2), there exists u0 ∈ X such that α(u0, fu0) ≥ 1.
Define a sequence {un} ∈ X by

(3.4) u2n = gu2n−1 and u2n+1 = fu2n, ∀ n ∈ N.

If there exists n0 ∈ N∗ such that σ(un0
, fun0

) = 0 or σ(un0
, gun0

) = 0, then the
proof is finished. So without loss of generality we can suppose that the successive
terms of {un} are different and let %n = σ(un+1, un) for n ∈ N∗. Then %n > 0 for
all n ∈ N∗. First we prove

(3.5) lim
n→∞

%n = 0.
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Since (f, g) ∈ GA(X, α) and α(u0, fu0) ≥ 1, we have

α(u1, u2) = α(fu0, gu1) ≥ 1 and α(u2, u3) = α(gu1, fu2) = α(gfu0, fgu1) ≥ 1.

Repeating this process, we obtain

α(un, un+1) ≥ 1, ∀ n ∈ N∗.

Again from (F3), we have

α(u2, u1) = α(gfu0, fu0) ≥ 1 and α(u4, u3) = α(gfu2, fu2) ≥ 1.

Repeating this process, we obtain

α(u2n, u2n−1) ≥ 1, ∀ n ∈ N.

Therefore (f, g) ∈ Υ(X, α,F) implies that

τ + F (%2n−1) = τ + F (σ(u2n−1, u2n)) = τ + F (σ(fu2n−2, gu2n−1))

(3.6)

≤ F

max


σ(u2n−2, u2n−1), σ(u2n−2, fu2n−2),

σ(u2n−1, gu2n−1), σ(u2n−2,gu2n−1)+σ(u2n−1,fu2n−2)
4 ,

σ(u2n−2,fu2n−2)σ(u2n−1,gu2n−1)
1+σ(u2n−2,u2n−1)

σ(u2n−2,fu2n−2)σ(u2n−1,gu2n−1)
1+σ(fu2n−2,gu2n−1)




= F

max


σ(u2n−2, u2n−1), σ(u2n−2, u2n−1),

σ(u2n−1, u2n), σ(u2n−2,u2n)+σ(u2n−1,u2n−1)
4 ,

σ(u2n−2,u2n−1)σ(u2n−1,u2n)
1+σ(u2n−2,u2n−1)

σ(u2n−2,u2n−1)σ(u2n−1,u2n)
1+σ(u2n−1,u2n)




≤ F
(

max

{
σ(u2n−2, u2n−1), σ(u2n−1, u2n),
σ(u2n−2,u2n−1)+3σ(u2n−1,u2n)

4 ,

})
≤ F (max{σ(u2n−2, u2n−1), σ(u2n−1, u2n)}).

If %2n−2 ≤ %2n−1 for some n ∈ N, then from (3.6) we have τ+F (%2n−1) ≤ F (%2n−1),
which is a contradiction since τ > 0. Thus %2n−2 > %2n−1 for all n ∈ N and so from
(3.6) we have

F (%2n−1) ≤ F (%2n−2)− τ.(3.7)
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Again using (f, g) ∈ Γ(X, α,F), we get

τ + F (%2n) = τ + F (σ(u2n+1, u2n)) = τ + F (σ(fu2n, gu2n−1))

≤ F

max


σ(u2n, u2n−1), σ(u2n, fu2n), σ(u2n−1, gu2n−1),

σ(u2n,gu2n−1)+σ(u2n−1,fu2n)
4 ,

σ(u2n,fu2n)σ(u2n−1,gu2n−1)
1+σ(u2n,u2n−1) ,

σ(u2n,fu2n)σ(u2n−1,gu2n−1)
1+σ(fu2n,gu2n−1)




≤ F

max


σ(u2n, u2n−1), σ(u2n, u2n+1), σ(u2n−1, u2n),

σ(u2n,u2n)+σ(u2n−1,u2n+1)
4 ,

σ(u2n,u2n+1)σ(u2n−1,u2n)
1+σ(u2n,u2n−1) , σ(u2n,u2n+1)σ(u2n−1,u2n)

1+σ(u2n+1,u2n)




≤ F
(

max

{
σ(u2n, u2n−1), σ(u2n, u2n+1),

3σ(u2n,u2n+1)+σ(u2n−1,u2n)
4

})
≤ F (max{σ(u2n, u2n−1), σ(u2n, u2n+1)}).

With similar arguments, we get

(3.8) F (%2n) ≤ F (%2n−1)− τ.

Combining (3.7) and (3.8), we obtain

F (%n) ≤ F (%n−1)− τ, for all n ∈ N.

Using the arguments of proof of Theorem 2.4, we reach to (3.5) and show that {un}
is a 0-Cauchy sequence in (X, σ). Since X is a 0-complete metric-like space, there
exists an u∗ ∈ X such that limn→∞ un = u∗; moreover,

lim
n,m→∞

σ(un, um) = lim
n→∞

σ(un, u
∗) = σ(u∗, u∗) = 0.

This implies that

lim
n→∞

σ(u2n+1, u
∗) = lim

n→∞
σ(u2n+2, u

∗) = 0.

Using (3.4), we convert to

lim
n→∞

σ(fu2n, u
∗) = lim

n→∞
σ(gu2n+1, u

∗) = 0.

Further we shall prove (3.3).
Using u2n+1 → u∗ ∈ (X, σ) and σ(u∗, u∗) = 0 in Lemma 1.5.(b), we have

(3.9) lim
n→∞

σ(u2n+1, fu
∗) = σ(u∗, fu∗).

By the σ-continuity of f and u2n → u∗ in (X, σ), we have

(3.10) lim
n→∞

σ(u2n+1, fu
∗) = lim

n→∞
σ(fu2n, fu

∗) = σ(fu∗, fu∗).
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From (3.9) and (3.10), we obtain

σ(fu∗, fu∗) = σ(u∗, fu∗).

Similarly using σ-continuity of g and the above arguments, we get

σ(gu∗, gu∗) = σ(u∗, gu∗).

Thus we have reached (3.3). 2

Example 3.5. Let X = [0, 3] be endowed with the σ-complete metric-like defined
by

σ(u, v) = max{u, v} for all u, v ∈ X.

Consider the mappings f, g : X→ X given by

fu =

{
2
3u, if u ∈ [0, 2],

u− 2
3 , if u ∈ (2, 3]

and gu =

{
3
4u, if u ∈ [0, 2],
1
2u+ 1

2 , if u ∈ (2, 3]

and α : X× X→ [0,∞) by

α(u, v) =

{
2, if 0 ≤ u ≤ v ≤ 2,

0, otherwise.

Moreover, take τ = ln( 4
3 ) and F ∈ F defined by F (t) = ln t. In this case the

contraction condition (3.2) reduces to

(3.11) σ(fu, gv) ≤ 3

4
∆f,g(u, v),

where

∆f,g(u, v) = max

{
σ(u, v), σ(u, fu), σ(v, gv), σ(u,gv)+σ(v,fu)

4 ,
σ(u,fu)σ(v,gv)

1+σ(u,v) , σ(u,fu)σ(v,gv)
1+σ(fu,gv)

}
.

In order to show (f, g) ∈ Γ(X, α,F), suppose that α(u, v) ≥ 1, i.e., 0 ≤ u ≤ v ≤ 2.
Then

σ(fu, gv) = max

{
2

3
u,

3

4
v

}
=

3

4
v,

∆f,g(u, v) = max

{
σ(u, v), σ(u, 2

3u), σ(v, 3
4v),

σ(u, 34v)+σ(v, 23u)

4 ,
σ(u, 23u)σ(v, 34 v)

1+σ(u,v) ,
σ(u, 23u)σ(v, 34 v)

1+σ( 2
3u,

3
4 v)

}
= max

{
v, u, v,

max{u, 34 v}+v
4 , uv

1+v ,
uv

1+ 3
4 v

}
= v.

Hence, (3.11) reduces to 3
4v ≤

3
4v. Thus (f, g) ∈ Γ(X, α,F).
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Next we prove (f, g) ∈ GA(X, α). Let u, v ∈ X be such that α(u, v) ≥ 1. By
definition of α, this implies that u, v ∈ [0, 2]. Thus,

α(fu, gv) = α

(
2

3
u,

3

4
v

)
= 2 > 1,

and

α(gfu, fgv) = α

(
g

(
2

3
u

)
, f

(
3

4
v

))
= α

(
1

2
u,

1

2
v

)
= 2 > 1.

Then, (f, g) ∈ GA(X, α).
We divide in three parts the proof that α(gfu, gu) ≥ 1, for all u ∈ X.
1◦ For u ∈ [0, 2], we have

α(gfu, gu) = α

(
1

2
u,

3

4
u

)
= 2 > 1.

2◦ For u ∈ (2, 8
3 ], we have fu = u− 2

3 ∈ [0, 2]. Therefore

α(gfu, gu) = α

(
g

(
u− 2

3

)
,

1

2
u+

1

2

)
= 2 > 1.

3◦ For u ∈ ( 8
3 , 3], we have fu = u− 2

3 ∈ (2, 3]. Therefore

α(gfu, fu) = α

(
g

(
u− 2

3

)
, gu

)
= α

(
1

2

(
u+

1

3

)
,

1

2
(u+ 1)

)
= 2 > 1.

Thus,
α(gfu, gu) = 2 > 1, for all u ∈ X.

Moreover, the mappings f and g are σ-continuous on (X, σ) and there exists u0 = 0
such that α(u0, fu0) = α(0, 0) = 2. Thus, all the hypotheses of Theorem 3.4 are
verified, so there exists a common fixed point of f and g (which is u∗ = 0).

We note that the previous result can be sharpened when continuity of f and g
is replaced by the following condition.

(H1): If {un} is a sequence in X such that if α(un, un+1) ≥ 1 and α(un+1, un) ≥ 1
for all n and un → u ∈ X as n→∞, then there exists a subsequence {un(k)}
of {un} such that α(un(k), u) ≥ 1 and α(u, un(k)) ≥ 1 for all k.

Now we have the following result.

Theorem 3.6. Let all the conditions of Theorem 3.4 be satisfied, apart from the
hypothesis (F4) which is replaced by (H1) and F is continuous. Then there exists
a common fixed point of f and g in X, that is, u∗ = fu∗ = gu∗.

Proof. Following the proof of Theorem 3.4, we obtain a 0-σ-Cauchy sequence {un}
in the 0-σ-complete metric-like space (X, σ). Hence, there exists u∗ ∈ X such that

lim
n→∞

σ(un, u
∗) = σ(u∗, u∗) = 0,
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that is, un → u∗ as n→∞. By the property (H1) of X, there exists a subsequence
{un(k)} of {un} such that α(u2nk, u

∗) ≥ 1 and α(u∗, u2nk−1) ≥ 1 for all k. Using
(F1) for u = u2n(k) and v = u∗ we have

τ + F (σ(u2n(k)+1, gu
∗)) = τ + F (σ(fu2n(k), gu

∗))(3.12)

≤ F

max


σ(u2n(k), u

∗), σ(u2n(k), fu2n(k)),

σ(u∗, gu∗),
σ(u2n(k),gu

∗)+σ(u∗,fu2n(k))

4 ,
σ(u2n(k),fu2n(k))σ(u∗,gu∗)

1+σ(u2n(k),u∗) ,
σ(u2n(k),fu2n(k))σ(u∗,gu∗)

1+σ(fu2n(k),gu∗)




= F

max


σ(u2n(k), u

∗), σ(u2n(k), u2n(k)+1),

σ(u∗, gu∗),
σ(u2n(k),gu

∗)+σ(u∗,u2n(k)+1)

4 ,
σ(u2n(k),u2n(k)+1)σ(u∗,gu∗)

1+σ(u2n(k),u∗) ,
σ(u2n(k),u2n(k)+1)σ(u∗,gu∗)

1+σ(u2n(k)+1,gu∗)


 .

Applying the limit as n→∞ to (3.12) and the continuity of F , we get

τ + F (σ(u∗, gu∗)) ≤ F (σ(u∗, gu∗))

a contradiction. Therefore we have u∗ = gu∗.
Similarly, by taking u = u∗ and v = u2n(k)−1 in (F1), we get u∗ = fu∗. Hence

f and g have a common fixed point u∗ such that σ(u∗, u∗) = 0. 2

To ensure the uniqueness of the common fixed point, we will consider the fol-
lowing hypothesis as a generalized form of (H0).

(H2): For all u, v ∈ CF (f, g) such that σ(u, u) = σ(v, v) = 0, we have α(u, v) ≥ 1,
where CF (f, g) is the set of common fixed points of f and g.

Theorem 3.7. Adding condition (H2) to the hypotheses of Theorem 3.6, the
uniqueness of the common fixed point u∗ of f and g such that σ(u∗, u∗) = 0 is
obtained.

Proof. Suppose that v∗ is another common fixed point of f and g, such that
σ(v∗, v∗) = 0 and, contrary to what is going to be proved, σ(fu∗, gv∗) = σ(u∗, v∗) >
0. By the assumption, we can replace u by u∗ and v by v∗ in the condition (3.1),
and we get easily

τ + F (σ(u∗, v∗)) = τ + F (σ(fu∗, gv∗))

≤ F

(
max

{
σ(u∗, v∗), σ(u∗, fu∗), σ(v∗, gv∗), σ(u∗,gv∗)+σ(v∗,fu∗)

4 ,
σ(u∗,fu∗)σ(v∗,gv∗)

1+σ(u∗,v∗) , σ(u∗,fu∗)σ(v∗,gv∗)
1+σ(fu∗,gv∗)

})
≤ F

(
max

{
σ(u∗, v∗), σ(u∗,v∗)

2

})
= F (σ(u∗, v∗))

a contradiction, which implies that u∗ = v∗. 2
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4. Application to Integral Equations

This section is devoted to the existence of solutions of an integral equation as
an application of Theorem 2.5.

Let X = C(I,R), where I = [0, 1], be endowed with the metric-like distance
function

σ(u, v) = max
t∈I
{|u(t)|, |v(t)|}.

We will consider the integral equation

(4.1) u(t) =

∫ t

0

K(t, s)f(s, u(s)) ds,

where f : I × R→ R and K : I × I → [0,∞) are given functions. Let

(4.2) Ju(t) =

∫ t

0

K(t, s)f(s, u(s)) ds,

define the respective operator J : X→ X.

Theorem 4.1. Let ξ : R × R → R be a given function. Suppose the following
assertions hold:

(F1) f is a continuous function, non-decreasing in the second variable;

(F2) there exists u0 ∈ X such that ξ(u0(t), Ju0(t)) ≥ 0 for all t ∈ I;

(F3) for all u, v, w ∈ X, ξ(u(t), v(t)) ≥ 0 and ξ(v(t), w(t)) ≥ 0 for all t ∈ I imply
that ξ(u(t), w(t)) ≥ 0 for all t ∈ I;

(F4) if {un} is a sequence in X such that un → u in X and ξ(un(t), un+1(t)) ≥ 0
for all n ∈ N and t ∈ I, then ξ(un(t), u(t)) ≥ 0 for all n ∈ N and t ∈ I;

(F5) (u, v) ∈ X2 and ξ(u(t), Ju(t)) ≥ 0 for all t ∈ I implies that
ξ(Ju(t), JJu(t)) ≥ 0 for all t ∈ I;

(F6) there exists τ > 0 such that for u, v ∈ X with ξ(u, v) ≥ 0, and t ∈ I we have

max{|f(t, u(t))|, |f(t, v(t))|} ≤ A−1 ∆1(u, v)(t)(
1 + τ

√
maxt∈I ∆1(u, v)(t)

)2 ,
where A = supt∈I

∫ t
0
K(t, r) dr and

∆1(u, v)(t) =

max



max{|u(t)|, |v(t)|},max{|u(t)|, |Ju(t)|},max{|v(t)|, |Jv(t)|},
max{|u(t)|, |Jv(t)|}+ max{|v(t)|, |Ju(t)|}

4
,

(max{|u(t)|, |Ju(t)|})(max{|v(t)|, |Jv(t)|})
1 + maxt∈I [max{|u(t)|, |v(t)|}]

,

(max{|u(t)|, |Ju(t)|})(max{|v(t)|, |Jv(t)|})
1 + maxt∈I [max{|Ju(t)|, |Jv(t)|}]


Then the equation (4.1) has at least one solution u∗ ∈ X.
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Proof. Define a function α : X× X→ [0,∞) by

α(x, y) =

{
1, for ξ(x(t), y(t)) ≥ 0, for all t ∈ I
γ, otherwise,

where γ ∈ (0, 1). It is easy to see that the assumption (F2) readily implies the
condition (AF2) of Theorem 2.4. Also, the assumption (F3) implies that α has the
transitive property (AF3). Finally, (F4) implies the regularity condition (AF5) of
Theorem 2.5 and the assumption (F5) easily implies that J ∈WA(X, α).

We are going to check that J ∈ Υ(X, α,F). For this, let u, v ∈ X be such that
α(u, v) ≥ 1, i.e., ξ(u(t), v(t)) ≥ 0 for all t ∈ I. For each t ∈ I, by the definition
(4.2) of operator J, we have

max
t∈I
{|Ju(t)|, |Jv(t)|}

= max
t∈I

{∣∣∣∣∫ t

0

K(t, r)f(r, u(r)) dr

∣∣∣∣ , ∣∣∣∣∫ t

0

K(t, r)f(r, v(r)) dr

∣∣∣∣}
≤ max

t∈I

{∫ t

0

K(t, r) |f(r, u(r))| dr,
∫ t

0

|K(t, r)| |f(r, v(r))| dr
}

= max
t∈I

∫ t

0

K(t, r) max
t∈I

(|f(r, u(r))|, |f(r, v(r))|) dr.

Now, using the assumption (F6), after routine calculations, we obtain

σ(Ju, Jv) = max
t∈I
{|Ju(t)|, |Jv(t)|} ≤ ∆J(u, v)(

1 + τ
√

∆J(u, v)
)2 ,

where ∆J(u, v) is given in (2.2).
Now, by considering F ∈ F given by F (t) = −1√

t
, t > 0 (see the condition (2.13)

in Remark 2.7), we have the condition

u, v ∈ X with α(u, v) ≥ 1⇒ τ + F (σ(Ju, Jv)) ≤ F (∆J(u, v))

for all u, v ∈ X with σ(Ju, Jv) > 0. Thus J ∈ Υ(X, α,F). Therefore, all the
hypotheses of Theorem 2.5 are satisfied and we conclude that there is a fixed point
u∗ ∈ X of the operator J. It is well known that in this case u∗ is also a solution of
the integral equation (4.1). 2

5. Application to Fractional Differential Equations

This section is devoted to the existence of solutions of a nonlinear fractional
differential equation as an application of Theorem 2.5. It is inspired by the paper [4].

Recall that the Caputo derivative of fractional order β is defined as

cDβ(g(t)) =
1

Γ(n− β)

∫ t

0

(t− s)n−β−1g(n)(s) ds (n− 1 < β < n, n = [β] + 1),
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where g ∈ Cn([0,∞)), [β] denotes the integer part of the positive real number β
and Γ is the gamma function.

We consider the nonlinear fractional differential equation of the form

(5.1) cDβ(x(t)) = f(t, x(t)) (0 < t < 1, 1 < β ≤ 2)

with the integral boundary conditions

(5.2) x(0) = 0, x(1) =

∫ η

0

x(s) ds (0 < η < 1),

where I = [0, 1], x ∈ C(I,R), and f : I × R→ R is a continuous function.

Let the corresponding operator J : X→ X be defined by

Ju(t) =
1

Γ(β)

∫ t

0

(t− s)β−1f(s, u(s)) ds− 2t

(2− η2)Γ(β)

∫ 1

0

(1− s)β−1f(s, u(s)) ds

(5.3)

+
2t

(2− η2)Γ(β)

∫ η

0

(∫ s

0

(s− z)β−1f(z, u(z)) dz

)
ds,

for u ∈ X, t ∈ I. This time we will use the metric-like distance function σ2 on
X = C(I,R) given by

σ2(u, v) = max
t∈I

[|u(t)|2 + |v(t)|2].

Theorem 5.1. Under the assumptions (F1)-(F5) of Theorem 4.1 and

(F6’) there exists τ > 0 such that for u, v ∈ X with ξ(u, v) ≥ 0, and t ∈ I we have

|f(t, u(t))|2 + |f(t, v(t))|2 ≤ B ∆2(u, v)(t)(
1 + τ

√
maxt∈I ∆2(u, v)(t)

)2 ,
where B = (2β−1)Γ(β)Γ(β+1)

2(5β+2) and

∆2(u, v)(t) = max



|u(t)|2 + |v(t)|2, |u(t)|2 + |Ju(t)|2, |v(t)|2 + |Jv(t)|2,
|u(t)|2 + |Jv(t)|2 + |v(t)|2 + |Ju(t)|2

4
,

(|u(t)|2 + |Ju(t)|2)(|v(t)|2 + |Jv(t)|2)

1 + maxt∈I [|u(t)|2 + |v(t)|2]
,

(|u(t)|2 + |Ju(t)|2)(|v(t)|2 + |Jv(t)|2)

1 + maxt∈I [|Ju(t)|2 + |Jv(t)|2]


,

the problem (5.1)–(5.2) has at least one solution u∗ ∈ X.



α-type F -contractions in metric-like spaces 673

Proof. Here we have to check the contraction condition (2.13) for u, v ∈ X (see
Remark 2.7.(III)).

For each t ∈ I, by the definition (5.3) of operator J, we have

|Ju(t)|2 + |Jv(t)|2 =

∣∣∣∣ 1

Γ(β)

∫ t

0

(t− s)β−1f(s, u(s)) ds

− 2t

(2− η2)Γ(β)

∫ 1

0

(1− s)β−1f(s, u(s)) ds

+
2t

(2− η2)Γ(β)

∫ η

0

(∫ s

0

(s− z)β−1f(z, u(z)) dz

)
ds

∣∣∣∣2
+

∣∣∣∣ 1

Γ(β)

∫ t

0

(t− s)β−1f(s, v(s)) ds

+
2t

(2− η2)Γ(β)

∫ 1

0

(1− s)β−1f(s, v(s)) ds

− 2t

(2− η2)Γ(β)

∫ η

0

(∫ s

0

(s− z)β−1f(z, v(z)) dz

)
ds

∣∣∣∣2

≤ 2

Γ2(β)

{[∫ t

0

(t− s)β−1f(s, u(s)) ds

]2

+

[ ∫ t

0

(t− s)β−1f(s, v(s)) ds

]2}
+

8t2

(2− η2)2Γ2(β)

{[∫ 1

0

(1− s)β−1f(s, u(s)) ds

]2

+

[ ∫ 1

0

(1− s)β−1f(s, v(s)) ds

]2}
+

8t2

(2− η2)2Γ2(β)

{[∫ η

0

(∫ s

0

(s− z)β−1f(z, u(z)) dz

)
ds

]2

+

[ ∫ η

0

(∫ s

0

(s− z)β−1f(z, v(z)) dz

)
ds

]2}
.

Applying now Cauchy-Schwartz inequality, we get

|Ju(t)|2 + |Jv(t)|2

≤ 2

Γ2(β)

∫ t

0

(t− s)2β−2ds

∫ t

0

[f2(s, u(s)) + f2(s, v(s))] ds

+
8t2

(2− η2)2Γ2(β)

∫ 1

0

(1− s)2β−2ds

∫ 1

0

[f2(s, u(s)) + f2(s, v(s))] ds

+
8t2

(2− η2)2Γ2(β)

∫ η

0

∫ s

0

(s− z)2β−2dz ds

×
∫ η

0

∫ s

0

[f2(z, u(z)) + f2(z, v(z))] dz ds.
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Now, using the assumption (F6’), after routine calculations, we obtain

|Ju(t)|2 + |Jv(t)|2 ≤ ∆J(u, v)(
1 + τ

√
∆J(u, v)

)2 .
This implies that

σ2(Ju, Jv) = max
t∈I

(|(Ju)(t)|2 + |(Jv)(t)|2) ≤ ∆J(u, v)(
1 + τ

√
∆J(u, v)

)2 ,
where ∆J(u, v) is given in (2.2).

Now, by considering F ∈ F given by F (t) = −1√
t
, t > 0, we have the condition

u, v ∈ X with α(u, v) ≥ 1⇒ τ + F (σ2(Ju, Jv)) ≤ F (∆J(u, v))

for all u, v ∈ X with σ2(Ju, Jv) > 0. Thus J ∈ Υ(X, α,F). Therefore, all the
hypotheses of Theorem 2.5 are satisfied and we conclude that there is a fixed point
u∗ ∈ X of the operator J. It is well known (see, e.g., [4, Theorem 3.1]) that in this
case u∗ is also a solution of the integral equation (5.3) and the fractional differential
equation (5.1) with the condition (5.2). 2

Example 5.2. Consider the following nonlinear fractional differential equation

(5.4) cD
3
2u(t) =

1

(t+ 3)2

|u(t)|
1 + |u(t)|

, t ∈ [0, 1]

with the three-point integral boundary value condition

(5.5) u(0) = 0, u(1) =

∫ 3/4

0

u(s) ds.

Here β = 3
2 , η = 3

4 < 1 and f(t, u(t)) = 1
(t+3)2

|u(t)|
1+|u(t)| . Therefore, the considered

system (5.4)–(5.5) is an example of the system (5.1)–(5.2). Further, |f(t, u)| ≤ 1
9 ,

B = 33
266 and therefore, taking τ = 9

2

√
33
133 −

1√
∆1

> 0, we can apply Theorem 5.1.

Hence, there exists a solution u∗ ∈ X of the equation (5.4) with the conditions (5.5).
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