References
- M. Abbas and D. Doric, Common fixed point theorem for four mappings satisfying generalized weak contractive condition, Filomat 24, (2) (2010), 1-10. https://doi.org/10.2298/FIL1002001A
- Ya.I. Alber and S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, in: I. Gohberg, Yu. Lyubich (Eds.), New Results in Theory Operator Theory, in: Advances and Appl. Birkhauser, Basel, vol. 98, 1997, pp. 7-22.
- H. Aydi, Coincidence and common fixed point results for contraction type maps in partially ordered metric spaces, International. J. Math. Anal. 5 (13) (2011), 631-642.
- H. Aydi, Some fixed point results in ordered partial metric spaces, J. Nonlinear Sciences. Appl. 4 (3) (2011), 210-217. https://doi.org/10.22436/jnsa.004.03.04
- H. Aydi, Fixed point results for weakly contractive mappings in ordered partial metric spaces, J. Advanced Math. Studies 4 (2) (2011), 1-12.
- H. Aydi, Fixed point theorems for generalized weakly contractive condition in ordered partial metric spaces, Journal of Nonlinear Analysis and Optimization: Theory and Applications, 2 (2) (2011), 33-48.
-
H. Aydi, Common fixed point results for mappings satisfying (
${\psi},{\phi}$ )-weak contractions in ordered partial metric spaces, International J. Mathematics and Statistics, 12 (2) (2012), 53-64. - H. Aydi, H.K. Nashine, B. Samet and H. Yazidi, Coincidence and common fiixed point results in partially ordered cone metric spaces and applications to integral equations, Nonlinear Anal. 74 (17) (2011), 6814-6825. https://doi.org/10.1016/j.na.2011.07.006
- H. Aydi, B. Damjanovic, B. Samet and W. Shatanawi: Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces, Math. Comput. Modelling 54 (2011), 2443-2450. https://doi.org/10.1016/j.mcm.2011.05.059
- H. Aydi, W. Shatanawi and C. Vetro: On generalized weakly G-contraction mapping in G-metric spaces, Comput. Math. Appl. 62 (2011), 4222-4229. https://doi.org/10.1016/j.camwa.2011.10.007
-
H. Aydi, W. Shatanawi and M. Postolache: Coupled fixed point results for (
${\psi},{\phi}$ )-weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl. 63 (2012), 298-309. https://doi.org/10.1016/j.camwa.2011.11.022 - D.W. Boyd and T.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464. https://doi.org/10.1090/S0002-9939-1969-0239559-9
-
D. Doric, Common fixed point for generalized
${\psi},{\phi}$ ) weak contractions, Appl. Math. Lett. 22 (2009), 1896.1900. https://doi.org/10.1016/j.aml.2009.08.001 - P.N. Dutta and B.S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory Appl. Volume (2008), Article ID 406368.
- G. Jungck and B.E. Rhoades, Fixed points for set valued functions without continiuty, Indian. J. Pur. Appl. Math. 29 (1998), 227-238.
-
O. Popescu, Fixed points for (
${\psi},{\phi}$ )-weak contractions, Appl. Math. Lett. 24 (2011), 1-4. https://doi.org/10.1016/j.aml.2010.06.024 - S. Reich, Some fixed point problems, Atti Acad. Naz. Lincei Ren. Cl. Sci. Fis. Mat. Natur. 57 (1975), 194-198.
- B.H. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683-2693. https://doi.org/10.1016/S0362-546X(01)00388-1
-
B.D. Rouhani and S. Moradi, Common fixed point of multivalued generalized
${\psi}$ -weak contractive mappings, Fixed Point Theory Appl. Volume (2010), Article ID 708984. -
Q. Zhang and Y. Song, Fixed point theory for generalized
${\psi}$ -weak contractions, Appl. Math. Lett. 22 (2009), 75-78. https://doi.org/10.1016/j.aml.2008.02.007
Cited by
-
On Fixed Points of
$ \alpha \text{-}\psi $ -Contractive Multivalued Mappings in Cone Metric Spaces vol.2013, pp.None, 2012, https://doi.org/10.1155/2013/313782