References
- O. Hadzic and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
- T.L. Hicks, Fixed point theory in probabilistic metric spaces, Zb.Rad. Prirod. Mat. Fak. Ser. Mat., 13 (1983), 63-72.
- O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 326-334.
- A. Mbarki and J. Hlal, Weakly-H contraction fixed point theorem in 𝑏-Menger spaces, Int. J. Appl. Math., 35(2) (2022), 225-232; doi: 10.12732/ijam.v35i2.2.
- A. Mbarki and R. Oubrahim, Probabilistic 𝑏-metric spaces and nonlinear contractions, Fixed Point Theory Appl., 2017 (2017), 15-29. https://doi.org/10.1186/s13663-017-0609-9
- A. Mbarki and R. Oubrahim, Common fixed point theorem in 𝑏-Menger spaces with a fully convex structure, Int. J. Appl. Math., 32(2) (2019), 219-238; doi: 10.12732/ijam.v32i5.1.
- A. Mbarki and R. Oubrahim, Fixed point theorem satisfying cyclical conditions in 𝑏-Menger spaces, Moroccan J. Pure. Appl. Anal., 5(1) (2019), 31-36. https://doi.org/10.2478/mjpaa-2019-0003
- D. Mihet, Multi-valued generalization of probabilistic contractions, J. Math. Anal. Appl., 304 (2005), 464-472. https://doi.org/10.1016/j.jmaa.2004.09.034
- S. Nadaban, Fuzzy 𝑏-metric Spaces, Int. J. Comput. Commun., 11 (2016), 273-281. https://doi.org/10.15837/ijccc.2016.2.2443
- E. Pap, O. Hadzic and R. Mesiar, A fixed point theorem in probabilistic metric spaces and applications in fuzzy set theory, J. Math. Anal. Appl., 202 (1996), 433-449. https://doi.org/10.1006/jmaa.1996.0325
- B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, New York, 1983.