• Title/Summary/Keyword: contraction mappings

Search Result 94, Processing Time 0.034 seconds

EXISTENCE AND UNIQUENESS OF FIXED POINT OF SOME EXPANSIVE-TYPE MAPPINGS IN GENERALIZED MODULAR METRIC SPACES

  • Godwin Amechi Okeke;Daniel Francis;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.957-988
    • /
    • 2023
  • We define new classes of expansive-type mappings in the setting of modular 𝜔G-metric spaces and prove the existence of common unique fixed point for these classes of expansive-type mappings on 𝜔G-complete modular 𝜔G-metric spaces. The results established in this paper extend, improve, generalize and compliment many existing results in literature. We produce some examples to validate our results.

SOME COMMON FIXED POINT THEOREMS FOR GENERALIZED f-WEAKLY CONTRACTIVE MAPPINGS

  • Chandok, Sumit
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.257-265
    • /
    • 2011
  • In this paper, we first prove a common fixed point theorem for generalized nonlinear contraction mappings in complete metric spaces there by generalizing and extending some known results. Then we present this result in the context of ordered metric spaces by using monotone non-decreasing mapping.

A Coupled Fixed Point Theorem for Mixed Monotone Mappings on Partial Ordered G-Metric Spaces

  • Lee, Hosoo
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.3
    • /
    • pp.485-500
    • /
    • 2014
  • In this paper, we establish coupled fixed point theorems for mixed monotone mappings satisfying nonlinear contraction involving a pair of altering distance functions in ordered G-metric spaces. Via presented theorems we extend and generalize the results of Harjani et al. [J. Harjani, B. L$\acute{o}$pez and K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011) 1749-1760] and Choudhury and Maity [B.S. Choudhury and P. Maity, Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 54 (2011), 73-79].

A HYBRID PROJECTION METHOD FOR RELAXED COCOERCIVE MAPPINGS AND STRICTLY PSEUDO-CONTRACTIVE MAPPINGS

  • Liu, Ying
    • East Asian mathematical journal
    • /
    • v.28 no.3
    • /
    • pp.305-320
    • /
    • 2012
  • The purpose of this paper is to introduce a hybrid projection method for finding a common element of the set of solutions of a generalized equilibrium problem, the set of solutions of a variational inclusion problem and the set of common fixed points of a finite family of strict pseudo-contractions in Hilbert spaces.

Generalized 𝜓-Geraghty-Zamfirescu Contraction Pairs in b-metric Spaces

  • Morales, Jose R.;Rojas, Edixon M.
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.279-308
    • /
    • 2021
  • The purpose of this paper is to introduce a class of contractive pairs of mappings satisfying a Zamfirescu-type inequality, but controlled with altering distance functions and with parameters satisfying the so-called Geraghty condition in the framework of b-metric spaces. For this class of mappings we prove the existence of points of coincidence, the convergence and stability of the Jungck, Jungck-Mann and Jungck-Ishikawa iterative processes and the existence and uniqueness of its common fixed points.

FIXED POINT THEOREMS FOR (𝜙, F)-CONTRACTION IN GENERALIZED ASYMMETRIC METRIC SPACES

  • Rossafi, Mohamed;Kari, Abdelkarim;Lee, Jung Rye
    • The Pure and Applied Mathematics
    • /
    • v.29 no.4
    • /
    • pp.369-399
    • /
    • 2022
  • In the last few decades, a lot of generalizations of the Banach contraction principle have been introduced. In this paper, we present the notion of (𝜙, F)-contraction in generalized asymmetric metric spaces and we investigate the existence of fixed points of such mappings. We also provide some illustrative examples to show that our results improve many existing results.

STRONG CONVERGENCE OF AN ITERATIVE ALGORITHM FOR SYSTEMS OF VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN q-UNIFORMLY SMOOTH BANACH SPACES

  • Jeong, Jae Ug
    • Korean Journal of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.225-237
    • /
    • 2012
  • In this paper, we introduce a new iterative scheme to investigate the problem of nding a common element of nonexpansive mappings and the set of solutions of generalized variational inequalities for a $k$-strict pseudo-contraction by relaxed extra-gradient methods. Strong convergence theorems are established in $q$-uniformly smooth Banach spaces.

EXTENSIONS OF BANACH'S AND KANNAN'S RESULTS IN FUZZY METRIC SPACES

  • Choudhur, Binayak S.;Das, Krishnapada;Das, Pradyut
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.265-277
    • /
    • 2012
  • In this paper we establish two common fixed point theorems in fuzzy metric spaces. These theorems are generalisations of the Banach contraction mapping principle and the Kannan's fixed point theorem respectively in fuzzy metric spaces. Our result is also supported by examples.

COMMON FIXED POINT THEOREMS UNDER RATIONAL CONTRACTIONS IN COMPLEX VALUED EXTENDED b-METRIC SPACES

  • Vairaperumal, V.;Raj, J. Carmel Pushpa;Joseph, J. Maria;Marudai, M.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.685-700
    • /
    • 2021
  • In this paper, we discuss the existence and uniqueness of fixed point and common fixed point theorems in complex valued extended b-metric spaces for a pair of mappings satisfying some rational contraction conditions which generalized and unify some well-known results in the literature.

FIXED POINT THEOREMS FOR WEAK CONTRACTION IN INTUITIONISTIC FUZZY METRIC SPACE

  • Vats, Ramesh Kumar;Grewal, Manju
    • Honam Mathematical Journal
    • /
    • v.38 no.2
    • /
    • pp.337-357
    • /
    • 2016
  • The notion of weak contraction in intuitionistic fuzzy metric space is well known and its study is well entrenched in the literature. This paper introduces the notion of (${\psi},{\alpha},{\beta}$)-weak contraction in intuitionistic fuzzy metric space. In this contrast, we prove certain coincidence point results in partially ordered intuitionistic fuzzy metric spaces for functions which satisfy a certain inequality involving three control functions. In the course of investigation, we found that by imposing some additional conditions on the mappings, coincidence point turns out to be a fixed point. Moreover, we establish a theorem as an application of our results.