References
- V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi contractive operators, Fixed Point Theory Appl. 2004 (2004), no. 2, 97-105. https://doi.org/10.1155/S1687182004311058
- B. S. Choudhury and K. Das, Fixed points of generalized Kannan type mappings in generalized Menger spaces, Commun. Korean Math. Soc. 24 (2009), no. 4, 529-537. https://doi.org/10.4134/CKMS.2009.24.4.529
- B. S. Choudhury and P. N. Dutta, Fixed point result for a sequence of mutually con- tractive self-mappings on fuzzy metric spaces, J. Fuzzy Math. 13 (2005), no. 3, 723-730.
- B. S. Choudhury and A. Kundu, A common fixed point result in fuzzy metric spaces using altering distances, J. Fuzzy Math. 18 (2010), no. 2, 517-526.
- L. Ciric, Some new results for Banach contractions and Edelstein contractive mappings on fuzzy metric spaces, Chaos Solitons Fractals 42 (2009), no. 1, 146-154. https://doi.org/10.1016/j.chaos.2008.11.010
- E. H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc. 10 (1959), 974-979. https://doi.org/10.1090/S0002-9939-1959-0110093-3
- A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), no. 3, 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
- A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90 (1997), no. 3, 365-368. https://doi.org/10.1016/S0165-0114(96)00207-2
- M. Grabice, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1988), no. 3, 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
- V. Gregori and A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002), no. 2, 245-253. https://doi.org/10.1016/S0165-0114(00)00088-9
- F. Gu, Strong convergence of an explicit iterative process with mean errors for a finite family of Ciric quasi contractive operators in normed spaces, Math. Commun. 12 (2007), no. 1, 75-82.
- O. Hadzic and E. Pap, Fixed Point Theory in Probabilistic Metric Space, Kluwer Academic Publishers, Dordrecht, 2001.
- G. Jungck and B. E. Rhoades, Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998), no. 3, 227-238.
- R. Kannan, Some results on fixed point, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
- R. Kannan, Some results on fixed point, Amer. Math. Monthly 76 (1969), 405-408. https://doi.org/10.2307/2316437
- I. Kramosil and J. Michaiek, Fuzzy metric and statistical metric spaces, Kybernetika (Prague) 11 (1975), no. 5, 336-344.
- D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems 144 (2004), no. 3, 431-439. https://doi.org/10.1016/S0165-0114(03)00305-1
- D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems 158 (2007), no. 8, 915-921. https://doi.org/10.1016/j.fss.2006.11.012
- A. Razani, A contraction theorem in fuzzy metric spaces, Fixed Point Theory Appl. 2005 (2005), no. 3, 257-265.
- J. Rodriguez Lopez and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems 147 (2004), no. 2, 273-283. https://doi.org/10.1016/j.fss.2003.09.007
- N. Shioji, T. Suzuki, and W. Takahashi, Contractive mappings, Kannan mappings and metric completeness, Proc. Amer. Math. Soc. 126 (1998), no. 10, 3117-3124. https://doi.org/10.1090/S0002-9939-98-04605-X
- P. V. Subrahmanyam, Completeness and fixed points, Monatsh. Math. 80 (1975), no. 4, 325-330. https://doi.org/10.1007/BF01472580
- R. Vasuki, A common fixed point theorem in a fuzzy metric space, Fuzzy Sets and Systems 97 (1998), no. 3, 395-397. https://doi.org/10.1016/S0165-0114(96)00342-9
- L. A. Zadeh, Fuzzy sets, Information and control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
Cited by
- Coupled coincidence point results in partially ordered generalized fuzzy metric spaces with applications to integral equations vol.10, pp.1-2, 2016, https://doi.org/10.1007/s40096-015-0173-6