References
- Ya. I. Al'ber, Generalized projection operators in Banach spaces: properties and applications, Functional-differential equations, 1-21, Funct. Differential Equations Israel Sem., 1, Coll. Judea Samaria, Ariel, 1993.
- Ya. I. Al'ber, Metric and generalized projection operators in Banach spaces: properties and applications, Theory and applications of nonlinear operators of accretive and monotone type, 15-50, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.
- Ya. I. Alber, R. Espinola, and P. Lorenzo, Strongly convergent approximations to fixed points of total asymptotically nonexpansive mappings, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 6, 1005-1022. https://doi.org/10.1007/s10114-007-6367-6
- Ya. I. Alber and J. Li, The connection between the metric and generalized projection operators in Banach spaces, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 6, 1109-1120. https://doi.org/10.1007/s10114-005-0718-y
- R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math. 38 (1981), no. 4, 304-314. https://doi.org/10.1007/BF02762776
- C. E. Chidume and J. Li, Projection methods for approximating fixed points of Lipschitz suppressive operators, Panamer. Math. J. 15 (2005), no. 1, 29-39.
- K. M. Das, S. P. Singh, and B.Watson, A note on Mann iteration for quasinonexpansive mappings, Nonlinear Anal. 5 (1981), no. 6, 675-676. https://doi.org/10.1016/0362-546X(81)90083-3
- F. Deutsch, Best Approximation in Inner Product Spaces, CMS Books in Mathematics 7, Springer-Verlag, New York, 2001.
- K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1960/1961), 305-310. https://doi.org/10.1007/BF01353421
- K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics 28, Cambridge University Press, Cambridge, 1990.
- G. Isac, V. M. Sehgal, and S. P. Singh, An alternate version of a variational inequality, Indian J. Math. 41 (1999), no. 1, 25-31.
- S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), no. 3, 938-945. https://doi.org/10.1137/S105262340139611X
- K. R. Kazmi, Mann and Ishikawa type perturbed iterative algorithms for generalized quasivariational inclusions, J. Math. Anal. Appl. 209 (1997), no. 2, 572-584. https://doi.org/10.1006/jmaa.1997.5368
- J. Li, On the existence of solutions of variational inequalities in Banach spaces, J. Math. Anal. Appl. 295 (2004), no. 1, 115-126. https://doi.org/10.1016/j.jmaa.2004.03.010
- J. Li, The generalized projection operator on re exive Banach spaces and its appli- cations, J. Math. Anal. Appl. 306 (2005), no. 1, 55-71. https://doi.org/10.1016/j.jmaa.2004.11.007
- H. N. Mhaskar and D. V. Pai, Fundamentals of Approximation Theory, CRC Press, Narosa Publishing House, New Delhi, 2000.
- S. H. Park and H. J. Rhee, Normalized duality mapping and generalized best approxi- mations, J. Chungcheong Math. Soc. 24 (2011), no. 4, 849-862.
- S. P. Singh, Ky Fan's best approximation theorems, Proc. Nat. Acad. Sci. India Sect. A 67 (1997), no. 1, 1-27.
- W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- M. M. Vainberg, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, John Wiley & Sons, New York-Toronto, 1973.
- H. K. Xu, Strong convergence of approximating fixed point sequences for nonexpansive mappings, Bull. Austral. Math. Soc. 74 (2006), no. 1, 143-151. https://doi.org/10.1017/S0004972700047535