• Title/Summary/Keyword: Singular Curves

Search Result 17, Processing Time 0.018 seconds

Heights on singular projective curves

  • Choi, Hyun-Joo
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • In this paper we show that for each divisor class c of degree zero on a projective curve C (not necessarily smooth), there exists a unique function $\hat{h}_c$ on C up to bounded functions. Section 1 contain basic definitions and a brief summary of classical results on Jacobians and heights. In section 2, we prove the existence of "canonical height" on a singular curves and in section 3 we prove the analogouse results on N$\acute{e}$ron functions for singular curves. This is a part of the author's doctorial thesis at Ewha Womens University under the guidence of professor Sung Sik Woo.g Sik Woo.

  • PDF

SOME RATIONAL CURVES OF MAXIMAL GENUS IN ℙ3

  • Wanseok LEE;Shuailing Yang
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.75-83
    • /
    • 2024
  • For a reduced, irreducible and nondegenerate curve C ⊂ ℙr of degree d, it was shown that the arithmetic genus g of C has an upper bound π0(d, r) by G. Castelnuovo. And he also classified the curves that attain the extremal value. These curves are arithmetically Cohen-Macaulay and contained in a surface of minimal degree. In this paper, we investigate the arithmetic genus of curves lie on a surface of minimal degree - the Veronese surface, smooth rational normal surface scrolls and singular rational normal surface scrolls. We also provide a construction of curves on singular rational normal surface scroll S(0, 2) ⊂ ℙ3 which attain the maximal arithmetic genus.

MOTIVICITY OF THE MIXED HODGE STRUCTURE OF SOME DEGENERATIONS OF CURVES

  • Chae, Hi-Joon;Jun, Byung-Heup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.593-610
    • /
    • 2010
  • We consider a degeneration of genus 2 curves, which is opposite to maximal degeneration in a sense. Such a degeneration of curves yields a variation of mixed Hodge structure with monodromy weight filtration. The mixed Hodge structure at each fibre, which is different from the limit mixed Hodge structure of Schmid and Steenbrink, can be realized as $H^1$ of a noncompact singular elliptic curve. We also prove that the pull back of the above variation of mixed Hodge structure to a double cover of the base space comes from a family of noncompact singular elliptic curves.

THEORY OF INFINITELY NEAR SINGULAR POINTS

  • Hironaka, Heisuke
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.5
    • /
    • pp.901-920
    • /
    • 2003
  • The notion of infinitely near singular points, classical in the case of plane curves, has been generalized to higher dimensions in my earlier articles ([5], [6], [7]). There, some basic techniques were developed, notably the three technical theorems which were Differentiation Theorem, Numerical Exponent Theorem and Ambient Reduction Theorem [7]. In this paper, using those results, we will prove the Finite Presentation Theorem, which the auther believes is the first of the most important milestones in the general theory of infinitely near singular points. The presentation is in terms of a finitely generated graded algebra which describes the total aggregate of the trees of infinitely near singular points. The totality is a priori very complex and intricate, including all possible successions of permissible blowing-ups toward the reduction of singularities. The theorem will be proven for singular data on an ambient algebraic shceme, regular and of finite type over any perfect field of any characteristics. Very interesting but not yet apparent connections are expected with many such works as ([1], [8]).

ON THE SINGULAR LOCUS OF FOLIATIONS OVER ℙ2

  • Shi Xu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.1067-1086
    • /
    • 2024
  • For a foliation 𝓕 of degree r over ℙ2, we can regard it as a maximal invertible sheaf N𝓕 of Ω2, which is represented by a section s ∈ H0(Ω2 (r+2)). The singular locus Sing𝓕 of 𝓕 is the zero dimensional subscheme Z(s) of ℙ2 defined by s. Campillo and Olivares have given some characterizations of the singular locus by using some cohomology groups. In this paper, we will give some different characterizations. For example, the singular locus of a foliation over ℙ2 can be characterized as the residual subscheme of r collinear points in a complete intersection of two curves of degree r + 1.

STALE REDUCTIONS OF SINGULAR PLANE QUARTICS

  • Kang, Pyung-Lyun
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.905-915
    • /
    • 1994
  • Let $M_g$ be the moduli space of isomorphism classes of genus g smooth curves. It is a quasi-projective variety of dimension 3g - 3, when $g > 2$. It is known that a complete subvariety of $M_g$ has dimension $< g-1 [D]$. In general it is not known whether this bound is rigid. For example, it is not known whether $M_4$ has a complete surface in it. But one knows that there is a complete curve through any given finite points [H]. Recently, an explicit example of a complete curve in moduli space is given in [G-H]. In [G-H] they constructed a complete curve of $M_3$ as an intersection of five hypersurfaces of the Satake compactification of $M_3$. One way to get a complete curve of $M_3$ is to find a complete one dimensional family $p : X \to B$ of plane quartics which gives a nontrivial morphism from the base space B to the moduli space $M_3$. This is because every non-hyperelliptic smooth curve of genus three can be realized as a nonsingular plane quartic and vice versa. This paper has come out from the effort to find such a complete family of plane quartics. Since nonsingular quartics form an affine space some fibers of p must be singular ones. In this paper, due to the semistable reduction theorem [M], we search singular plane quartics which can occur as singular fibers of the family above. We first list all distinct plane quartics in terms of singularities.

  • PDF

Analysis of the Singular Point of Cyclic Voltammograms Recorded with Various Scan Rates

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.244-249
    • /
    • 2017
  • This paper presents the results of an investigation into the isoamperic point of cyclic voltammograms, which is defined as the singular point where the voltammograms of various scan rates converge. The origin of the unique point is first considered from a theoretical perspective by formulating the voltammetric curves as a system of linear equations, the solution of which indicates that a trivial solution is only available at the potential at which the net current is zero during the reverse potential scan. In addition, by way of a mathematical formulation, it was also shown that the isoamperic point is dependent on the switching potential of the potential scanning. To validate these findings, theoretical and practical cyclic voltammmograms were studied using finite-element based digital simulations and 3-electrode cell experiments. The new understanding of the nature of the isoamperic point provides an opportunity to measure the charge transfer effects without the influence of the mass transfer effects when determining the thermodynamic and kinetic characteristics of a faradaic system.

BRILL-NOETHER THEORY FOR RANK 1 TORSION FREE SHEAVES ON SINGULAR PROJECTIVE CURVES

  • Ballico, E.
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.359-369
    • /
    • 2000
  • Let X be an integral Gorenstein projective curve with g:=pa(X) $\geq$ 3. Call $G^r_d$ (X,**) the set of all pairs (L,V) with L$\epsilon$Pic(X), deg(L) = d, V $\subseteq$ H^0$(X,L), dim(V) =r+1 and V spanning L. Assume the existence of integers d, r with 1 $\leq$ r$\leq$ d $\leq$ g-1 such that there exists an irreducible component, , of $G^r_d$(X,**) with dim($\Gamma$) $\geq$ d - 2r and such that the general L$\geq$$\Gamma$ is spanned at every point of Sing(X). Here we prove that dim( ) = d-2r and X is hyperelliptic.

  • PDF