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MOTIVICITY OF THE MIXED HODGE STRUCTURE OF
SOME DEGENERATIONS OF CURVES

Hi-joon Chae and Byungheup Jun

Abstract. We consider a degeneration of genus 2 curves, which is op-
posite to maximal degeneration in a sense. Such a degeneration of curves
yields a variation of mixed Hodge structure with monodromy weight fil-
tration. The mixed Hodge structure at each fibre, which is different from
the limit mixed Hodge structure of Schmid and Steenbrink, can be real-
ized as H1 of a noncompact singular elliptic curve. We also prove that
the pull back of the above variation of mixed Hodge structure to a dou-
ble cover of the base space comes from a family of noncompact singular
elliptic curves.

1. Introduction

A (pure) Hodge structure of weight k consists of a free abelian group VZ of
finite rank together with a decreasing filtration F • (called Hodge filtration) on
VC = VZ ⊗ C such that for each p, VC = F p ⊕ F k−p+1. A classical and most
important example of Hodge structure of weight k is the cohomology group
Hk(X,Z) (modulo torsion) of a compact Kähler manifold or a complete non-
singular variety X defined over C. The subspace F p ⊂ Hk(X,C) is generated
by the classes representable by closed (r, k − r) forms with r ≥ p.

For a noncomplete and/or singular complex variety, Deligne defined a mixed
Hodge structure on the cohomology [3, 4]. A mixed Hodge structure (or MHS,
in abbreviation) on a free abelian group VZ of finite rank consists of an increas-
ing filtration W• (called weight filtration) on VQ = VZ ⊗ Q and a decreasing
filtration F • (again called Hodge filtration) on VC such that the Hodge fil-
tration induces pure Hodge structure of weight k on each graded component
GrW

k = Wk/Wk−1.
A family of compact Kähler manifolds Xs (s ∈ S) (or smooth projective

complex varieties) over a base space S is a holomorphic map f : X → S between
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complex manifolds which is proper and smooth with Xs = f−1(s). Such a
family of manifolds Xs gives a family Rkf∗Z of Hodge structures Hk(Xs,Z)
whose Hodge filtrations F •s vary holomorphically with respect to the parameter
s ∈ S. This is a classical example of a variation of Hodge structure on a complex
manifold. A variation of Hodge structure of weight k on a complex manifold S
consists of a local system VZ of free abelian groups of finite rank together with
a decreasing filtration F• (called Hodge filtration) of the holomorphic vector
bundle V = VZ ⊗ OS by holomorphic subbundles such that (1) the Hodge
filtration induces pure Hodge structure of weight k on each stalk of VZ and (2)
covariant derivatives (with respect to the flat connection associated to the local
system VZ) of sections of Fp belong to Fp−1 (Griffiths’ transversality).

A family of compact Kähler manifolds (or smooth projective varieties) as
above may degenerate into a singular manifold. If the base space is one-
dimensional, such a family of manifolds is given locally by a holomorphic map
between manifolds f : X → D (D, a small open disk), which is proper and
smooth over D∗ = D − {0}. After suitable blow-ups and cyclic base changes,
we may assume that the singular fiber X0 = f−1(0) is reduced and its singular-
ities are normal crossings. We call such a family a (one-parameter semistable)
degeneration. Thus a degeneration yields a variation of Hodge structure on the
punctured disk D∗.

A local system of vector spaces (or of free abelian groups) on a manifold
yields, actually is equivalent to, a representation of the fundamental group
of the manifold (on the stalk of the local system at a base point). Applying
this to the VHS on D∗ associated to a degeneration f : X → D, we get the
monodromy operator T , the action of the generator of the fundamental group of
D∗ corresponding to a counterclockwise loop around the origin, which acts on
Hk(Xt,C) where t ∈ D∗ is a base point. The monodromy operator T is quasi-
unipotent (i.e., Tm is unipotent for some m) and after suitable base change, can
be assumed to be unipotent. The nilpotent operator N = − log T on Hk(Xt,Q)
yields a canonical increasing filtration W• which is called weight filtration (See
Section 2 for more detail). Although the Hodge filtration F • and this weight
filtration W• on Hk(Xt,Q) do not always yield a mixed Hodge structure, there
exists a filtration F •lim which together with W• induces a MHS (called the
limit mixed Hodge structure) on Hk(Xt,Q) [11, 13]. Actually, these filtrations
W• and F •lim for varing t form filtrations W• and F•lim by sublocal systems of
R•f∗Z⊗Q and by holomorphic subbundles of R•f∗Z⊗O, respectively, yield a
variation of mixed Hodge structure on a small deleted neighborhood of 0. The
limit mixed Hodge structure is used to prove the exactness of some sequences
arising from a degeneration of varieties and has further applications.

There are mixed Hodge structures which are originated from geometry, but
which are not the cohomolgy groups of some varieties a priori. It should be of
interest to investigate if these mixed Hodge structures are isomorphic to mixed
Hodge structures attached to some varieties, or are motivic more generally. One
example of such mixed Hodge structures is the limit mixed Hodge structure
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explained in the last paragraph. This limit mixed Hodge structure is known to
be motivic [9, (2.3)]. As indicated in the last paragraph, given a degeneration
f : X → D, the monodromy weight filtration W• and the original Hodge
filtration F • do not always make a mixed Hodge structures on the cohomology
groups of fibers [6, Sections 3, 4], [7, pp. 70–74]. In [6], Deligne showed that
if the degeneration is maximal (i.e., if the resulting mixed Hodge structure
(W•, F •lim) on the cohomology of nonsingular fiber is of Hodge-Tate type), this
(W•, F •) is always a mixed Hodge structure. In loc. cit., while it is described
how these structures are motivic in some cases, a counterevidence is suggested
to the problem in full generality relying on another conjecture. In this paper,
we investigate if this (W•, F •) arising from some degeneration of curves forms
a MHS, and in that case if this new MHS can be realized as H1 of some curve
(We emphasize that we are not considering the limit MHS (W•, F •lim)).

Before we state our main results, we should remark that in the rest of this
paper we will use the term motivic in a narrower sense as follows: We say
a mixed Hodge structure is motivic if it is isomorphic to the usual MHS of
cohomology of some (singular quasi-projective) variety. In the same way, we
say a variation of mixed Hodge structures over a base space S is motivic if it is
given by a flat family of such varieties over S. In this paper, unless otherwise
stated, cohomology groups Hk(V ) of a complex variety V are always equipped
with usual (pure or mixed) Hodge structures. When we mean other MHS on
Hk(V ) such as limit MHS or another new MHS above, we denote it by subscript
(See below).

We consider the following degeneration of genus 2 curves (This degeneration
is, in a sense, opposite to the above mentioned maximal degeneration). Let
f : C∗ → D∗ be the family of smooth projective curves

Cs = f−1(s) : y2 = (x2 − s)(x− a1)(x− a2)(x− a3)

(s ∈ D∗, a small punctured disk)

where a1, a2, a3 are holomorphic functions on D such that ±√s, a1, a2, a3 are
distinct on D∗ and a1, a2, a3 remain distinct at s = 0. Then the original
Hodge filtration F • and the above mentioned weight filtration W• on H1(Cs)
define a mixed Hodge structure (Proposition 7). Thus H1(Cs) is equipped
with three Hodge structures: usual pure HS, the limit MHS and the above new
MHS. To avoid confusion, let us denote each of them by H1(Cs), H1(Cs)lim and
H1(Cs)M , respectively. One of our main results is that this new MHSH1(Cs)M

can be realized as H1 of some singular noncompact curve (Theorem 13).
The family (R1f∗Z,W•,F•) of mixed Hodge structure H1(Cs)M is a varia-

tion of mixed Hodge structure on D∗ (See the paragraph before Theorem 14).
Since it is isomorphic to H1 of a singular curve fiberwise, it is natural to ask
if there is a (flat) family of singular curves g : X → D∗ such that R1g∗Z
equipped with the natural mixed Hodge structure realizes the whole VMHS
(R1f∗Z,W•,F•). The answer is partially positive. We prove that if we take
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the pull-back of the VMHS (R1f∗Z,W•,F•) to a double cover of D∗, then
there is a family of curves which realizes this VMHS (Theorem 14).

To prove these results, we develop an analogue of Legendre formula for the
period determinant of Jacobi elliptic functions. Then we calculate a differential
equation which is satisfied by the extension parameter of Z(−1) by W1 that
fixes W2/W0.

The solution of this differential equation is a 2 : 1 function on the elliptic
curve to P1 which resembles the cross ratio of 4 points on the Riemann sphere
in Hodge theoretic manner. Thus it is a multivalued function on the Riemann
sphere.

As a motivation and a guide of our study of degeneration of genus 2 curves,
we first consider a degeneration of elliptic curves in Section 2. This already has
been analyzed in other places [2, 6, 15].

Acknowledgment. We thank to Hélène Esnault for asking the related ques-
tions and motivations. We are indepted to Claude Sabbah, Masanori Asakura
and Vincent Maillot for valuable comments and discussions.

2. A degeneration of elliptic curves

We consider the following degeneration of elliptic curves f : E → D with
fibers given by

Es = f−1(s) : y2 = (x2 − s)(x− 1) (s ∈ D)

whereD is a small disc centered at the origin. The Hodge filtration ofH1(Es,C)
is given by

F 0 = H1(Es,C) ⊃ F 1 = {holomorphic differential forms on Es} = C · dx
y
.

Let γ and δ denote the usual cycles spanning H1(Es,Z) with γ vanishing on the
singular fiber E0. More precisely, if we view the elliptic curve Es as a branched
double cover of C ∪ {∞} with two branch cuts along segments joining {±√s}
and {1,∞}, respectively. Then γ is the cycle lying above a small circle around
the branch cut joining {±√s} and δ is a cycle such that {γ, δ} is a symplectic
basis of H1(Es,Z). Intuitively, the cycle γ vanishes (or is homologous to zero)
in the singular fiber E0. In other words, its image under the inclusion Es → E
vanishes in H1 of the total space E.

As explained in the introduction, we have the monodromy operator T acting
onH1 of the smooth fiber Es (s ∈ D∗ = D−{0}). The matrix of T with respect
to the dual basis {γ∗, δ∗} is

T =
(

1 0
1 1

)
.

This follows from the formula for Picard-Lefschetz transformation [2, Chap-
ter 1]. A nilpotent endomorphism N on a vector space V induces a canon-
ical increasing filtration, called the weight filtration of N [5, (1.6.1)]. In the
simplest case when N2 = 0, the weight filtration is W−2 = (0) ⊂ W−1 =
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Image(N) ⊂ W0 = Kernel(N) ⊂ W1 = V . In our case under consideration,
N = log T = T − I defines the weight filtration (with the indices shifted by one
from the canonical filtration) on H1(Es,Q) given by

Q · δ∗ = W0 = W1 ⊂W2 = H1(Es,Q).

Proposition 1. (H1(Es),W•, F •) is a mixed Hodge structure.

Proof. The proof is straightforward. Since c1 =
∫

γ
dx/y 6= 0, we have [dx/y] =

c1γ
∗ + c2δ

∗ 6∈ W0 and W0 ∩ F 1 = (0). Let V be a complex vector space
equipped with integral (or real) structure. If F k = V ⊃ F k+1 = 0 is a one-step
filtration on V , V is a pure Hodge structure of weight 2k (of type (k, k)) with
F • as its Hodge filtration. This shows that GrW

0 and GrW
2 with induced Hodge

filtrations are pure Hodge structures of types (0,0) and (1,1), respectively. ¤

Thus H1(Es) is equipped with three Hodge structures: usual pure HS,
the limit MHS and the above new MHS. Let us denote each of them by
H1(Es),H1(Es)lim and H1(Es)M , respectively. We claim that this family of
mixed Hodge structures H1(Es)M (s ∈ D∗) can be realized as those of a suit-
able family of singular non-complete curves. As a mixed Hodge structure,
H1(Es)M is an extension of Z(−1) by Z(0). Such extensions are classified by
C∗ [6, (7.1–2)]. The extension

0 → Z(0) α→ H
β→ Z(−1) → 0

corresponding to q ∈ C∗ is described as follows:

HC = C2, basis e0, e1,

W0 = Q · e1, F 1 = C · e0,
HZ = Z · e1 + (2πi)−1Z · (e0 + log q e1) ⊂ HC,

α(1) = e1, β((2πi)−1e0) = (2πi)−1.

In our case of H1(Es)M , we have

(1)
1

2πi
log q =

∫

δ

dx

y

/ ∫

γ

dx

y
.

Let A = {a1, a2}, B = {b1, b2} ⊂ P1(C) with A ∩ B = ∅. And let X be
the quotient space (P1 \A)/B, which is a singular quasi-projective curve. The
normalization ofX isX ′ = P1\A, the smooth compactification ofX ′ isX

′
= P1

and X = P1/B is a compactification of X. The H1(X,Z) is generated by the
cycle δ represented by a path δ′ in X ′ = P1 \ A joining b1 and b2, and by a
small circle ε around a2. By [4, (10.3.11)], we have

W0(H1(X,Z)) = Ker(H1(X,Z) → H1(P1,Z)) = H1(X,Z) = Q · δ∗,
F 1(H1(X,C)) = H0(X, r̄∗Ω1

P1(log{a1, a2})) = H0(P1,Ω1
P1(log{a1, a2})).
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Clearly, H0(P1,Ω1
P1(log{a1, a2})) is spanned by dz

(z−a1)(z−a2)
(or dz

z−ai
if ei-

ther a1 or a2 is ∞). Since
∫

ε
dz

(z−a1)(z−a2)
= 2πi

a2−a1
6= 0, it follows that

W0∩F 1 = (0) and H1(X,C) is a mixed Hodge structure of type {(0, 0), (1, 1)}.
The complex parameter q ∈ ExtMH(Z(−1),Z(0)) corresponding to this mixed
Hodge structure is

1
2πi

log q =
∫

δ′

dz

(z − a1)(z − a2)
/∫

ε

dz

(z − a1)(z − a2)

=
1

2πi
log

(
(b2 − a1)(b1 − a2)
(b2 − a2)(b1 − a1)

)
.

Hence, q is the cross ratio of a1, a2, b1, b2. We have proven the following.

Proposition 2. Any nontrivial extension of Z(−1) by Z(0) can be realized as
H1((P1\A)/B,Z) for suitable A,B ⊂ P1(C) with |A| = |B| = 2 and A∩B = ∅.

Of course, the choice of A and B is not unique. But given q ∈ ExtMH(Z(−1),
Z(0)) ∼= C∗, it is most convenient to take A = {q, 1} and B = {0,∞} since the
cross ratio of q, 1, 0,∞ is q.

Now consider our family Es of elliptic curves and let

τ = τ(s) =
(∫

δ

dx/y

)
/

(∫

γ

dx/y

)

denote the right hand side of (1) and put q = exp(2πiτ). Then the two mixed
Hodge structures H1(Es)M and H1((P1 \ {q, 1})/{0,∞}) are isomorphic. We
have proven the following.

Proposition 3. H1(Es)M is of geometric origin. In other words, it is isomor-
phic to the mixed Hodge structure H1 of a singular quasi-projective curve.

Remark 4. The mixed Hodge structure H1(Es)M can be realized as H1(equ-
ipped with usual MHS) of the singular fibre E0 : y2 = x2(x − 1) minus
two points. The map ρ : P1 → E0 given by t 7→

(
−4t

(t−1)2 ,
4it(t+1)
(t−1)3

)
induces an

isomorphism between P1/{0,∞} and E0. Hence H1((P1 \ {q, 1})/{0,∞}) and
H1(E0 \ {ρ(q), ρ(1)}) are isomorphic.

But it is not true in general that given a degeneration of curves f : C → D,
the corresponding family of mixed Hodge structures H1(Cs)M can be obtained
from a family of open subcurves of the singular fibre C0. See the next section
for an example.

Remark 5. The j-invariant of the elliptic curve Es is given by

j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · = 64(3s+ 1)3

s(s− 1)2
.

This gives q as a (transcendental) function of s around s = 0 and q = 0. The
correspondence s 7→ q is locally one-to-one.
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Remark 6. The mixed Hodge structure (H1(Es),W•, F •) is different from the
limit mixed Hodge structure (H1(Es),W•, F •nil) considered in [11]. The map
s 7→ F •, identifying each fibre H1(Es) of the locally constant sheaf R1π∗C,
induces a multivalued holomorphic map from the puctured disk D∗ into the
Grassmannian variety of full flags of C2. The map s 7→ exp(− log s

2πi N)F •(s)
gives a single valued holomorphic map from D∗ into the Grassmanian and has
a limit F •lim as s→ 0. Put F •nil(s) = exp( log s

2πi N)F •lim then (H1(Es),W•, F •nil) is
a variation of mixed Hodge structures near s = 0.

In our case, this implies that τ(s)− log s
2πi has a limit, say, τ0 as s→ 0 and that

the complex parameter corresponding to (H1(Es),W•, F •nil) is q = exp(2πiτ0)s,
which is an algebraic function of s. Some calculation shows that τ0 = − 2 ln 2

πi .

3. A degeneration of genus 2 curves

In this section we consider the following degeneration of genus 2 curves
f : C → D. This means, in particular, that fibers Cs over D∗ = D − {0} are
smooth projective curves of genus 2 and the singular fiber C0 is reduced and
its singularities are normal crossings (See the Introduction for the use of the
terminology degeneration in this paper).

(2) Cs = f−1(s) : y2 = (x2− s)(x− a1(s))(x− a2(s))(x− a3(s)) (s ∈ D)

where a1, a2 and a3 are holomorphic functions on D such that ±√s, a1(s), a2(s)
and a3(s) are distinct for each s ∈ D∗ and 0, a1(0), a2(0) and a3(0) are distinct.

The Hodge filtration of H1(Cs,C) is given by

(3)
F 0 = H1(Cs,C) ⊃ F 1 = H0(Cs,Ω1)

= {holomorphic differential forms on Cs}.

Let γ1, γ2, δ1, δ2 be cycles of Cs given as follow. If we view the hyperelliptic
curve Cs as a branched double cover of C ∪ {∞} with three branch cuts along
segments joining {±√s} {a1, a2} and {a3,∞}, respectively. Then γ1 and γ2

are cycles lying above small circles around the branch cuts joining {±√s} and
{a1, a2}, respectively. And δ1 and δ2 are cycles such that {γ1, δ1, γ2, δ2} is a
symplectic basis of H1(Cs,Z). The cycle γ1 vanishes (or is homologous to zero)
in the singular fiber C0: its image under the inclusion Cs → C vanishes in H1

of the total space C.
As explained in Introduction and Section 2, we have the monodromy oper-

ator T acting on H1 of the smooth fiber Cs (s ∈ D∗ = D − {0}). The matrix
of T with respect to the dual basis {γ∗1 , δ∗1 , γ∗2 , δ∗2} is the 4 × 4 block diagonal
matrix with (

1 0
1 1

)
, (1), (1)
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along the diagonal. And the nilpotent operator N = log T = T − I induces the
following weight filtration on H1(Cs,Q) (See Section 2 and references there).

(4)
W0 = Image(N) = 〈δ∗1〉 ⊂ W1 = Kernel(N) = 〈δ∗1 , γ∗2 , δ∗2〉

⊂ W2 = H1(Es,Q).

We have the following:

Proposition 7. (H1(Cs),W•, F •) is a mixed Hodge structure.

Proof. The proof is again straightforward. Let ω1, ω2 be two linearly indepen-
dent holomorphic forms on Cs (hence form a basis of F 1) which are normalized
as in the following period matrix:

(5)
(∫

γ1
ω1

∫
γ2
ω1

∫
δ1
ω1

∫
δ2
ω1∫

γ1
ω2

∫
γ2
ω2

∫
δ1
ω2

∫
δ2
ω2

)
=

(
1 0 Ω11 Ω12

0 1 Ω21 Ω22

)
.

It is well known that Ω = (Ωij)i,j=1,2 is symmetric and Im Ω is positive definite.
One can directly check that ω2 ∈W1 since

∫
γ1
ω2 = 0. Meanwhile ω1 ∈W2\W1

from the nonvanishing of
∫

γ1
ω1.

Hence GrW
0 = W0 = 〈δ∗1〉 = F 0∩W0 = F 0∩W0⊕F 1 ∩W0 is a pure Hodge

structure of type (0, 0).
We have F 1 ∩ W1 = 〈ω2〉 6⊃ W0. F 1 ∩ W1 = F 1 ∩W1 is also an one-

dimensional subspace not containing W0. Hence W1/W0 = F 1(W1/W0) ⊕
F 1(W1/W0) if (F 1∩W1 +W0)∩ (F 1∩W1) = 0. This holds since the Ω = (Ωij)
above is a symmetric matrix whose imaginary part is positive definite, hence
in particular Ω22 6∈ R. So GrW

1 with induced Hodge filtration is a pure Hodge
structure of type (1, 0) and (0, 1). Finally, GrW

2 = F 1(W2/W1), which tells us
that this is a pure Hodge structure of type (1, 1). ¤

We will denote by H1(Cs)M the above new MHS on H1(Cs). We want
to construct a curve X whose H1 is, as a mixed Hodge structure, isomorphic
to H1(Cs)M . For simplicity of notation, we will denote the periods in (5) as
follow:

(6) τ = Ω22, α = Ω12 = Ω21, β = Ω11.

We view H1(Cs)M as an iterated extension of pure Hodge structures GrW
0 =

W0, Gr
W
1 = W1/W0 and GrW

2 = W2/W1. The proof of the last proposition
shows that GrW

0
∼= Z(0), GrW

2
∼= Z(−1) and that GrW

1 is isomorphic to H1

of an elliptic curve whose normalized period is τ = Ω22 =
∫

δ2
ω2/

∫
γ2
ω2. Note

that since the imaginary part of the normalized period matrix (Ωij) is positive
definite, the imaginary part of τ = Ω22 is positive. Hence τ is indeed a nor-
malized period of some elliptic curve. Let Eτ be an elliptic curve over C which
is isomorphic to C/(Z + τZ) as complex manifolds. Thus the MHS H1(Cs)M

is built up from Z(0), H1(Eτ ) and Z(−1):

(7) 0 → Z(0) → W1 → H1(Eτ ) → 0,
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(8) 0 → W1 → H1(Cs)M → Z(−1) → 0,

(9) 0 → H1(Eτ ) → W2/W0 → Z(−1) → 0,

(10) 0 → Z(0) → H1(Cs)M → W2/W0 → 0.

We recall the following description of extension of mixed Hodge structures in
[1]. This is a generalization of description of ExtMH(Z(−1),Z(0)) given in the
previous section. For a mixed Hodge structure H of highest weight ≤ 2p − 1,
the generalized intermediate Jacobian JpH is defined by

JpH =
HC

F p +HZ
.

Let A and B be two mixed Hodge structures. Then HomZ(AZ, BZ) equipped
with the following filtrations (W•, F •) is a MHS: Wm Hom(A,B) = {f ∈
Hom(A,B) | f(WkA) ⊂ Wk+mB for each k} and Fm Hom(A,B) is defined
similarly. Suppose that A and B are separated in the sense that WmA = A
and WmB = 0 for some m. Then there is a natural isomorphism of groups

ExtMH(B,A) ∼= J0 Hom(B,A)

where ExtMH denotes the group of extensions in the category of mixed Hodges
structures. The above correspondence is given as follows. For an extension

0 → A→ H
π→ B → 0 ,

choose sections sF and sZ of π which preserve Hodge filtrations and inte-
gral structures, respectively. Then ψ = sF − sZ, viewed as a map from BC
to AC, modulo F 0 Hom(B,A) + Hom(B,A)Z is the corresponding point of
J0 Hom(B,A).

In cases of ExtMH(H1(Eτ ),Z(0)) and ExtMH(Z(−1),H1(Eτ )), which will be
used later, these mean the following. It can be shown that any class of homo-
morphism ψ : H1(Eτ ) → Z(0) in J0 Hom(H1(Eτ ),Z(0)) can be represented by
a map such that ψ(γ∗) = α and ψ(δ∗) = 0 for some α ∈ C, where γ and δ are
cycles which are images under C→ C/(Z+ τZ) ∼= Eτ of line segments joining
{0, 1} and {0, τ} respectively. Two such maps ψ and ψ′ corresponding to α and
α′ respectively are in the same class if and only if α ≡ α′ mod Z+ τZ. Hence
the extensions of H1(Eτ ) by Z(0) are classified by C/(Z+ τZ). The extension
H corresponding to α ∈ C is given explicitly as follows:

HC = C3 ⊃ HZ = Z3, basis e0, e1, e2,

W0 = Q · e0, F 1 = C · (e1 + αe0 + τe2).
(11)

Similarly, any class of homomorphism ψ : Z(−1)→H1(Eτ ) in J0 Hom(Z(−1),
H1(Eτ )) can be represented by a map such that ψ((2πi)−1) = α·δ∗ some α ∈ C
and the class of ψ in J0 Hom(Z(−1), H1(Eτ )) depends only on the class of α
in C/(Z + τZ). Thus the extensions of Z(−1) by H1(Eτ ) are classified by
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C/(Z + τZ). The extension H corresponding to α ∈ C is given explicitly as
follows:

HC = C3 ⊃ HZ = Z3, basis e1, e2, e3,

W1 = 〈e1, e2〉, F 1 = 〈e1 + τe2, e3 + αe2〉.
(12)

Under these identifications, the extensions (7) and (9) above forming H1(Cs)M

correspond to periods Ω21 and Ω12 of (5) respectively, which are equal and de-
noted by α in this paper. We claim that these periods are non-zero. Otherwise,
as a (pure) Hodge structure, H1(Cs) is the direct sum of two Hodge structures
〈γ∗1 , δ∗1〉 and 〈γ∗2 , δ∗2〉, each of which is isomorphic to H1 of some elliptic curve.
By Torelli theorem for curves, Cs itself is isomorphic to a disjoint union of two
elliptic curves, which is a contradiction.

4. Geometric realization

In this section, we ask if the mixed Hodge structure H1(Cs)M arising from
degeneration of curves as in the previous section is coming from geometry. We
will consider a singular curve (E \ A,B) whose H1 gives the mixed Hodge
structure of Proposition 7, where E is an elliptic curve and A = {a1, a2}, B =
{b1, b2} ⊂ E with A ∩B = ∅.

Let U = E \ A. In the following diagram, all the cohomology groups are
with Z-coefficient and are equipped with the (usual) mixed Hodge structures.
The maps are morphisms between MHS’s and the horizontal and the vertical
sequences are exact.

0

²²

0

²²
H0(E) //

²²

H0(U)

²²
H0(B)

²²

H0(B)

²²
0 // H1(E,B) //

²²

H1(U,B)

²²

// H0(A)(−1)

²²

// H2(E,B)

²²

// · · ·

0 // H1(E) //

²²

H1(U) //

²²

H0(A)(−1) // H2(E) // · · ·

0 0



MOTIVICITY OF THE MIXED HODGE STRUCTURE 603

The vertical sequences are the long exact sequences coming from the normal-
ization maps:

ν : E → E/B (resp. ν|U : U → U/B)

and the horizontal sequences are coming from the completion:

j : (U,B) → (E,B).

Note that any MHS H of weight {0, 1, 2} yields the following diagram of
short exact sequences. Then compare these two diagrams (See also (13) and
(14) below). For example, in the first column of the above diagram, H0(B)
and H1(E) are pure of weight 0 and 1, respectively. Hence the kernel of the
map H1(E,B) → H1(E) is W0 of H1(E,B) (actually of H1(U,B) which is
shown below). Similarly, in the third row, H1(E,B) is mixed of weight {0, 1}
and H0(A)(−1) is pure of weight 2 where ‘(−1)’ denotes the Tate twist. Hence
H1(E,B), being the kernel of the map H1(U,B) → H0(A)(−1), is W1 of
H1(U,B).

0

²²

0

²²
W0

²²

W0

²²
0 // W1

//

²²

H //

²²

GrW
2

// 0

0 // GrW
1

//

²²

H/W0
//

²²

GrW
2

// 0

0 0
The four short exact sequences of MHS’s appearing in the last diagram when
H is H1(Cs)M of the last section, are nothing but the sequences (7), (8), (9),
and (10). Comparing last two diagrams, (7), (8), (9), and (10), and considering
parameters describing extensions of MHS’s in relevant short exact sequences,
we seek for a singular curve (E \ A,B) whose H1 is isomorphic to H1(Cs)M .
Recall that for H1(Cs)M , the normalized periods τ = Ω22, α = Ω12 = Ω21 and
β = Ω11 of Cs in (5) are the parameters describing these extensions of MHS’s.

As indicated in the last section, we have GrW
1 H1(Cs)M

∼= H1(Eτ ) where
Eτ is a complex elliptic curve, isomorphic to C/(Z+ τZ). So we take E = Eτ .
As usual, let γ and δ be cycles of Eτ (or more precisely, of C/(Z+ τZ)) which
are images of line segments joining {0, 1} and {0, τ}, respectively. And let ω
be the invariant holomorphic differential form on Eτ corresponding to dz on C.

First, we will choose such A,B ⊂ Eτ separately in the following so that
H1(Eτ , B) realizes the extension of H1(Eτ ) by Z(0) in (7) and H1(Eτ \ A)
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realizes the extension of Z(−1) by H1(Eτ ) in (9). The MHS of W1 appears in
the following diagram and (7).

(13) 0 // W0
// W1

// GrW
1

// 0

H0(Eτ ) // H0(B)

OO

// H1(Eτ , B) // H1(Eτ ) // 0

In view of (11) and remarks following it, we have to find B = {b1, b2} ⊂ Eτ

such that ∫

σb1,b2

ω = α

for a cycle σb1,b2 with ∂σb1,b2 = b2 − b1. Really, the cocycles δ∗b1,b2
and ω on

Eτ/B are normalized generators of W0H
1(Eτ/B) and F 1H1(Eτ/B), respec-

tively, appearing in (11). As Eτ is homogeneous and ω is invariant, we can put
b1 = 0. Let π : C → Eτ be the universal covering of Eτ . Then π∗(ω) = dz if
we set the parameter of C to z. Put b2 = π(α). Then we obtain, via change of
variables, ∫

σb1,b2

ω =
∫ α

0

dz = α

as required. Actually, we have proven the following:

Proposition 8. In the category of mixed Hodge structures, any nontrivial
extension of H1(Eτ ) by Z(0) can be realized as H1(Eτ/B,Z) for a suitable
B ⊂ Eτ with |B| = 2.

We turn to W2/W0, which comes from the following sequence and (9).

(14) 0 // GrW
1

// W2/W0
// GrW

2

²²

// 0

H1(Eτ ) // H1(Eτ \A) // H0(A)(−1) // H2(Eτ )

We have to find a configuration of A = {a1, a2} in Eτ such that H1(Eτ \ A)
realizes the extension of (9). Recall that the parameter describing this extension
as given in (12) is α. We can take cocycles γ∗, δ∗, ε∗ on Eτ \A as the normalized
generators e1, e2, e3 of H1(Eτ \A) given in (12) where ε is a small circle around
a1. Recall that F 1H1(Eτ \ A) is spanned by the holomorphic form ω and a
meromorphic form ωA on Eτ which is holomorphic on Eτ \ A and has simple
poles at A (ωA is so called a differential of the third kind on Eτ ). Moreover if
we normalize ωA so that

Resa1 ωA =
1

2πi
,

then {ω, ωA − (
∫

γ
ωA)ω} is the normalized basis of F 1 given in (12). And

the parameter of the extension given in the second row of (14) is
∫

δ
ωA −
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(
∫

γ
ωA)(

∫
δ
ω), which is the determinant of the period matrix

( ∫
γ
ω

∫
δ
ω∫

γ
ωA

∫
δ
ωA

)
.

We calculate this period determinant applying the reciprocity law for differen-
tials of the first and third kinds [8, p. 230]. Before doing so, we remark that
the above period determinant is a pairing of homology and cohomology classes
of Eτ if we view ωA represents a cohomology class of Eτ as follows. Let S be
a path joining a1 and a2 which may be chosen so that it does not intersect
γ nor δ. Since Resa1 ωA + Resa2 ωA = 0, we may view ωA as representing a
class in H1(Eτ \ S) ∼= H1(Eτ ), or more precisely, as its image under the map
H1(Eτ \ A) → H1(Eτ \ S) ∼= H1(Eτ ). Then the above period determinant is
equal to the pairing 〈[ω] ∪ [ωA], [Eτ ]〉.

Now suppose the elliptic curve Eτ is given explicitly in the following Weier-
strass equation where g2 and g3 are Eisenstein series of weight 4 and 6, respec-
tively [12, Chapter 6].

Eτ : y2 = fτ (x) := 4x3 − g2(τ)x− g3(τ).

Then the map C/(Z + τZ) → Eτ given by z 7→ (℘(z), ℘′(z)) gives an iso-
morphism of complex Lie groups where ℘(z) is the Weierstrass ℘-functions
associated to the lattice generated by 1 and τ . For the sake of simplicity of
notation, we will not distinguish C/(Z + τZ) and Eτ if no confusion arises.
Because an elliptic curve is an abelian group, we may take A = {(x0,±y0)}. In
other words, a1 and a2 are inverse to each other with respect to the addition.
Then we have the following (Of course, ωA is determined up to addition by
a scalar multiple of ω, which does not change the determinant of the above
period matrix):

ω =
dx

y
, ωA =

y0
2πi

dx

(x− x0)y
.

Recall that π : C→ Eτ , z 7→ (℘(z), ℘′(z)) is the universal covering of Eτ . We
have

π∗ω = dz,

π∗ωA =

√
fτ (℘(a))

2πi(℘(z)− ℘(a))
dz =

℘′(a)
2πi(℘(z)− ℘(a))

dz
(15)

for a in the fundamental domain of Eτ in C such that (℘(a), ℘′(a)) = (x0, y0)
(in other words, π(a) = a1 and π(−a) = a2). We obtain

∫

γ

ω

∫

δ

ωA −
∫

δ

ω

∫

γ

ωA = 2πi
∑

c=±a

Resc

(∫
dz · π∗ωA

)
(16)

= 2πi
∑

c=±a

Resc π
∗ωA ·

∫ c

0

dz
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= 2πi
∑

c=±a

Resc
c℘′(a)

2πi(℘(z)− ℘(a))
dz

= 2a .

Thus we obtain an analogue of Legendre formula for the period determinant
of Jacobi elliptic functions.

Proposition 9. With notations as above, we have

det

( ∫
γ
ω

∫
δ
ω∫

γ
℘′(a)

x−℘(a)ω
∫

δ
℘′(a)

x−℘(a)ω

)
= 4πia .

Therefore putting a = α/2, i.e., putting A = {±α/2} in the second row of
(14) we obtain the desired extension corresponding to α. Note that A is stable
under involution of Eτ , the choice of branch of the square root doesn’t change
the answer. We have proven the following:

Proposition 10. In the category of mixed Hodge structures, any nontrivial
extension of Z(−1) by H1(Eτ ) can be realized as H1(Eτ \ A,Z) for a suitable
A ⊂ Eτ with |A| = 2.

Summing up, given non-zero αA and αB in C/(Z + τZ) the mixed Hodge
structures H1(Eτ \A) and H1(Eτ/B) with A = {±αA/2} and B = {z, z+αB}
(here the initial point z can be arbitrary) correspond to αA ∈ ExtMH(Z(−1),
H1(Eτ )) and αB ∈ ExtMH(H1(Eτ ),Z(0)), respectively (Both of these extension
groups can be identified with C/(Z + τZ). See (11) and (12)). Now the final
step is to analyze the MHS H1(Eτ \ A,B). Recall that for H1(Eτ \ A,B), we
have

W0
∼= Z(0), W1

∼= H1(E,B), GrW
1
∼= H1(Eτ ),

W2/W0
∼= H1(Eτ \A), GrW

2
∼= Z(−1).

Fixing αB determines the MHS H1(Eτ/B) and the short exact sequence 0 →
Z(0) → H1(Eτ , B) → H1(Eτ ) → 0, which induces the long exact sequence

0 → HomMH(Z(−1),Z(0)) → HomMH(Z(−1),H1(Eτ , B)) →
→ HomMH(Z(−1),H1(Eτ )) → ExtMH(Z(−1),Z(0)) →
→ ExtMH(Z(−1),H1(Eτ , B)) → ExtMH(Z(−1),H1(Eτ )) → · · · .

Since HomMH(Z(−1),H1(Eτ )) = 0 = Ext2MH(Z(−1),Z(0)), we obtain the fol-
lowing short exact sequence which is the second row of the above long exact
sequence.

0 → J0 Hom(Z(−1),Z(0)) → J0 Hom(Z(−1),H1(Eτ , B)) → J0 Hom(Z(−1),H1(Eτ )) → 0.

We have J0 Hom(Z(−1),Z(0)) ∼= C/Z(1) ∼= C∗ and J0 Hom(Z(−1),H1(Eτ )) ∼=
Eτ . This sequence gives a C∗-torsor over Eτ . In our notations, αA is a coordi-
nate in the base space. We will show that given αA 6= 0, every extension which
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belongs to the fiber over αA can be realized as H1(Eτ \ A,B) for a suitable
choice of the initial point z in B = {z, z + αB}.

The fiber over αA of the above C∗-torsor and the action of C∗ on the fiber
are given as follow: let σz be a cycle of Eτ \ A joining z and z + αB . Any
class of homomorphism ψ : Z(−1) → H1(Eτ , B) in J0 Hom(Z(−1),H1(Eτ , B))
which belongs to the fiber over αA can be represented by a map such that
ψ((2πi)−1) = β · σ∗z + αA · δ∗ for some β ∈ C. The action of C∗, or more
precisely the action of C modulo Z is given by translation of the parameter β.
The extension H corresponding to β is given explicitly as follows. Actually this
gives any mixed Hodge structure H with Hodge numbers h0,0 = h0,1 = h1,0 =
h1,1 = 1.

HC = C3 ⊃ HZ = Z4, basis e0, e1, e2, e3,

W0 = Q · e0, W1 = 〈e0, e1, e2〉,
F 1 = 〈αBe0 + e1 + τe2, βe0 + αAe2 + e3〉.

(17)

ForH1(Eτ \A,B) we can take σ∗z , γ
∗, δ∗, ε∗ (in previous notations) as e0, . . . , e3,

respectively. And ω, ωA − (
∫

γ
ωA)ω as the normalized generators of F 1 above.

Thus to show that any non-trivial extension of Z(−1) by H1(Eτ , B) can be
realized as H1(Eτ \ A,B), it is enough to show that the following period,
which is a multi-valued function of the initial point z, can take any complex
value (modulo Z):

(18) βz :=
∫

σz

ωA =
∫ z+αB

z

ωA.

This period depends on the homotopy class of σz in Eτ \A, hence as a function
of the initial point z, it is multi-valued. But exp(2πiβz) depends only on
the initial point z since the residues of ωA stay in Z(−1). This (single-valued)
function of z is defined as long as A∩B = ∅, that is, if z 6= ±αA/2,−αB±αA/2.
And clearly it is holomorphic in its domain of definition.

Proposition 11. With notations as before, the function exp(2πiβz) of z is
meromorphic on Eτ . Its poles and zeros are as follow:

If αA 6= ±αB, it has simple poles at −αB − αA/2, αA/2 and simple zeros at
−αB + αA/2,−αA/2.

If αA = αB, simple poles at −αB −αA/2, αA/2 and a double zero at −αB +
αA/2 = −αA/2.

If αA = −αB, a double pole at −αB − αA/2 = αA/2 and simple zeros at
−αB + αA/2,−αA/2.

Proof. The result is obtained by looking at the singularities of the differential
equation satisfied by 2πiβz. The function 2πiβz satisfies the following differ-
ential equation:

∇d/dz =
d

dz
− d

dz
log(exp(2πiβz))(19)
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=
d

dz
−

( ℘′(αA/2)
℘(z + αB)− ℘(αA/2)

− ℘′(αA/2)
℘(z)− ℘(αA/2)

)
.

Recall that the Weierstrass ℘-functions associated to the lattice Z + τZ is an
even meromorphic function on C/(Z + τZ) whose only singularity is a double
pole at zero. From this analytic properties, it is easy to check the singularities
of the above differential equation are simple poles at {±αA/2,−αB ± αA/2}.

If αA 6= ±αB , then the residues at −αB −αA/2,−αB +αA/2,−αA/2, αA/2
are −1, 1, 1,−1, respectively. Really, we have

Res−αB−αA/2∇d/dz =
℘′(αA/2)
℘′(−αA/2)

= −1

and residues at other poles are obtained similarly. If αA = αB , then −αB +
αA/2 = −αA/2 and the residue at this pole is 2. Similarly, If αA = −αB , then
−αB−αA/2 = αA/2 and the residue at this pole is −2. In all cases, the solution
exp(2πiβz) of the above differential equation is a meromorphic function on Eτ

with poles and zeros as described in the statement of the proposition. ¤

Remark 12. We have seen in Section 2 that when we realize a non-trivial
extension of Z(−1) by Z(0) as H1(P1 \ {a1, a2}, {b1, b2}), the cross ratio of
the four points a1, a2, b1, b2 of P1 is the corresponding extension parameter.
Similarly, given αA, αB of C/(Z+τZ), when we view H1(Eτ \{±αA/2}, {z, z+
αB}) as an iterated extension of Z(−1) by H1(Eτ ) and then by Z(0), the
exponential period exp(2πiβz) is the corresponding extension parameter. Thus
exp(2πiβz) may be thought to be an elliptic analogue of cross ratio of the four
points αA/2,−αA/2, z, z + αB of Eτ .

Now we are able to show that the MHS H1(Cs)M is isomorphic to H1(Eτ \
A,B) for suitable A,B ⊂ Eτ .

Theorem 13. Let H = (HZ,W•, F •) be a mixed Hodge structure of weight
0, 1, 2 such that GrW

0 , GrW
1 and GrW

2 are isomorphic to Z(0),H1(Eτ ) and
Z(−1), respectively, where Eτ is a complex elliptic curve. Suppose that in the
category of mixed Hodge structures, the extension W1 of GrW

1 by GrW
0 and the

extension W2/W0 of GrW
2 by GrW

1 are non-trivial. Then H is isomorphic to
H1(Eτ \ A,B) for suitable A,B ⊂ Eτ with |A| = |B| = 2 and A ∩ B = ∅. In
particular, the mixed Hodge structure H1(Cs)M in Proposition 7 can be realized
in this way.

Proof. By the arguments given in paragraphs below Proposition 10 and before
Proposition 11, it remains to show that the period βz in (18) can take any
complex value (modulo Z). By Proposition 11, the exponential period map
Eτ → P1, z 7→ exp(2πiβz) is surjective and generically 2 to 1. In particular,
when restricted to Eτ \ {±αA/2,−αB ± αA/2}, exp(2πiβz) is surjective onto
C∗. This proves the first statement of the theorem.

For the MHS H1(Cs)M the parameters αA and αB in C/(Z + τZ) corre-
sponding to the extensions (9) and (7) are the same and equal to the period
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α = Ω12 = Ω21 of (5). As explained in the paragraph below (12), we have
α 6= 0. Hence the second statement of the theorem follows from the first. ¤

The family of mixed Hodge structures H1(Cs)M = (H1(Cs),W•, F •) (s ∈
D∗) yields a variation of mixed Hodge structure H = (R1f∗Z,W•,F•) on D∗,
where f : C → D∗ is our family of curves Cs = f−1(s) (For a definition of
variation of mixed Hodge structure, see [14, (3.4)]). Here W• are the sublocal
systems of R1f∗Q locally generated by the same bases of W• given in Section 3.
Since the family f is locally trivial, this makes sense. And F• is the usual Hodge
filtration of R1f∗C ⊗ O. Since (R1f∗Z,F•) with Gauss-Manin connection is
a variation of Hodge structure and each fiber (H1(Cs),W•, F •) is shown to
be a MHS, it is obvious that (R1f∗Z,W•,F•) is a VMHS. Now we ask the
same question to the variation of the mixed Hodge structure that we have
constructed: is there a (flat) family of singular curves over D∗ which realizes
this VMHS?

Theorem 14. The pull back of the above variation of mixed Hodge structure
H = (R1f∗Z,W•,F•) on D∗ to a double cover of D∗ can be realized by a family
of singular affine elliptic curves (Eτ(s) \As)/Bs.

Proof. We will use the notations of Section 3. It boils down to the question
whether the singular affine elliptic curve (Eτ(s) \As)/Bs with As = {±α(s)/2}
and Bs = {z(s), z(s)+α(s)} , whose H1 is shown to be isomorphic to H1(Cs)M

for each s ∈ D∗, can be glued to form a family over D∗. We can choose
two global holomorphic differential forms ω1, ω2 on C∗ = C \ f−1(0), whose
restrictions to each fiber Cs are linearly independent. Since γ1 and γ2 remain
invariant under monodromy T , we may assume their restrictions to each fiber
Cs are normalized. Since δ2 is also invariant under monodromy, this shows that
the parameters α(s) = Ω21(s) = Ω12(s) =

∫
δ2(s)

ω1(s) and τ(s) = Ω22(s) =∫
δ2(s)

ω2(s) are single-valued holomorphic functions on D∗. Thus Eτ(s) \ As

form a flat family over D∗.
However, the initial point z(s) of Bs, which measures the relative position of

As and Bs is a multi-valued function of s. To see this, first recall that in view
of (17) and the subsequent paragraph, z = z(s) is such that Ω11(s) ≡ βz +const
mod Z, or equivalently such that exp(2πiΩ11(s)) = exp(2πiβz) × const. Put
q(s) = exp(2πiΩ11(s)). This map sends s = 0 to q = 0 and locally one-to-one.
If z(s) is a single valued function of s, then around q = 0, z would be a single
valued function of q. But from Proposition 11, we know this is impossible as
there are exactly two z’s mapping to one q. If we choose a double cover D′ of
D∗, s′ 7→ s such that z(s′) becomes a single-valued function of s′ on D′, then
the pull back of H to this cover can be realized by the family of singular affine
elliptic curves (Eτ(s′) \As′)/Bs′). ¤
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