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HEIGHTS ON SINGULAR PROJECTIVE CURVES

HyuN Joo CHol

Introduction

In this paper we show that for each divisor class ¢ of degree zero
on a projective curve C (not necessarily smooth), there exists a unique
function Tzc on C up to bounded functions. Section 1 contain basic
definitions and a brief summary of classical results on Jacobians and
heights. In section 2, we prove the existence of “canonical height” on a
singular curves and in section 3 we prove the analogouse results on Néron
functions for singular curves. This is a part of the author’s doctorial
thesis at Ewha Womens University under the guidence of professor Sung

Sik Woo.

1. Heights on projective curves

Throughout Chapter 1, F is a field with a proper set of absolute
values Mr satisfying the product formula. We denote by K some finite
extension of F.

DEFINITION. Let P € P™(K) be a point in projective space, rational
over K. Let (zo,21,...,2,) be the coordinates for P with z; € K. The
height of P (relative to K) is defined by

H(P)= [ supilaill..
vEMy

We define the logarithmic height to be
hk(P) = logHk(P).

The Height of P is well defined by the product formula and for any
finite extension L of F, Hy(P) = Hg(P)Y*E], Thus we define;
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DEFINITION. Let P € P*(F*) be a point in a projective space, where
F*® is the algebraic closure of F. We define an absolute height of P by

H(P) = Hy(P)/1K:F]

and
h(P) = logH(P)

for any finite extension K of F over which P is rational.

DEFINITION. Let V be a Projective variety defined over a field K.
Let ¢: V — P™ be a morphism defined over K. Then for each P ¢
V(K), ¢(P) € P™(K). Thus we define the height on V relative to ¢ by

Hy ,(P) = Hi(p(P)), hi o(P) = lOQHI\',cp(P)

and

Hy(P) = H(o(P)), hy(P)=logH,(P).

Let V be a projective variety, and X, be a Cartier divisor on V. We
define
L(Xo)={fe K(V)|(f) > —Xo}

and

£=L(Xo)={X € Din(V) | X 2 0,X - X = (f)}

then L(Xp) is finite dimensional vector space over K and £ = £(X,) is
an invertible sheaf on V| called a linear system on V.

Let (fo, f1,..., fm) be any set of generators of L(X,)). Then this defines
a rational map of V into P™

¥ :(anflv-”’fm): V- P™

If two morphisms ¢: V. — Pg" and ¥: V — Py™ are obtained by
the same linear system L(Xy),then h, — hy is bounded, denoted by
he = hy + O(1).

If X is a divisor in a linear system £ on V, then we denoted by hx the
height function A, associated with any one of the maps o derived from
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this linear system £. Then hx is well defined up to bounded function
O(1).

Let ¢ € Pic(V) be a divisor class. Then for any divisors X and Y,
hx = hy 4+ O(1). We denote by k. the height hx for any divisor X in
c. Thus h. is uniquely determined up to bounded function O(1).

Let A be an abelian variety defined over a field K. The principal
relation between divisor classes is that given ¢ € Pic(B), the association

a— a* for a € Hom(A,B)
is quadratic in a. In other word, if we let
D.(a,B)=(a+ B)c—a*c--f%c

then D (a, 3) is bilinear in («, ). From this fundamental relation, we
obtains; for ¢ € Pic(A), there exists a unique quadratic form ¢, and a
linear form [, such that

he = qc + 1 + O(1).

If ¢ is even, that is (—~1)*c = ¢, then I, = 0.
The sum ¢, + I, will be denoted by h. , and is called the Néron- Tate
height, or canonical height (see [5] Chap.4,Chap.5).

Let C be a complete non-singular curve of genus g > 2 and J be its
Jacobian. We fix an embedding, and assume C C J. Let

(g-1)-times

0=C+C+---+C

be the divisor on J, and let € be the divisor class of @ in Pic(J). Let
67 = 6 be the class

6 =—s"2(0) +p*1(8) + p*5(6)

in Pic(J x J), and
Yo: J — Pic(J)
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be the homomorphism denoted by a +» 6, — 8 where s; is the sum map
from J x J to J, and p;, p; are projections on the first and second factor
of J x J respectively. Then (J,8) is a dual variety of J and 4 gives an
isomorphism of J with Picy(J). Thus we have

'6(a) = o(a)
where for any point a in J, the intersection
t8(a) = 6.(J x a)

is defined as a divisor class on J and Picy means divisor classes which
are algebraically equivalent to zero. Considering C'x J C Jx J, let 8¢y 7
be the restriction of § to C x J then

y = Soxily)

gives an isomorphism of J(K') with Pico(C)g. Thus (J(K),8cx 1) is a
dual variety of C.

Let ¢ € Pico(C) and let S(c) be the corresponding point in J. Then
by functoriality of height gives

hs(z, 5(c)) = ho(z) + O(1)

for z € C where hj is the canonical height on J x J associated with the
divisor class & (see[5] Chap.5 §5).

LEMMA 1.1. Let f: U — V be a rational map of one variety into
another, and assume that V is complete non-singular. Let Y be a divisor

in D,(V') such that f*(Y') is defined. Then f*(Y) € D,(U).
Proof. See ([4] Chap.V ,§1).

THEOREM 1.2. Let C be a complete non-singular curve of genus ¢ >
2. Then there exists a natural homomorphism

Pico(C') — {real valued functions on C}/0(1)
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given by ¢ — h. where Pico(C) be the group of divisor classes of degree
zero. Furthmore if f: C; — Cy is a morphism of complete non-singular
curves, then for c € Picy(Cy) the divisor class on Cy, we have

hfve = heo f+O(1).

Proof. Take
h. = h6(7 S(C))
then this is independent of the class ¢ up to bounded functions. Now

Rfee = heo f+0(1)

is followed by Lemma 1.1 and the functoriality of height.

2. Heights on singular projective curves

Let C be a projective curve and S be the set of singular points on C'.
Note that § is a finite subset of C. Let z € C' be a closed point and
f € Oc¢,; be a regular element in the local ring Oc,,. We define

ord;(f) =1(Oc./(f))

where [ denote the length of O¢ ;-modules. Since

ord,(fg) = ord.(f) + ord.(g)

for regular elements f and g in O¢ ;, we can define

ord;(f/g) = ords(f) — ord.(g)

for any element f/g of the total ring of fractions of Oc.. Let D be a
Cartier divisor on C represented by f,/g. in a neighborhood of 2. Then
we associate the Weil divisor

Z ord,(D)x

zeC
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corresponding to the Cartier divisor D. The degree of a Cartier divisor
D is defined by

deg(D) = Y ord,(D)[K(z): K.
zeC

We denote Pico(C') to be the group of divisor classes of degree zero.
Given Cartier divisor D on C, there exists an element f in K(C) such
that

SN supp(D - (f)) = 0.

Thus for each Cartier divisor D on C, we can associate to a Weil divisor

on C' —§S.
LEMMA 2.1. Let f: C' — C be the normalization of C, and D be a

Cartier divisor on C. Then

deg(D) = deg(f* D)

Proof. See ([1] Chap.9 §1).
Let f: C' — C be the normalization. Then we have (see [2],P.282)

0— @ 07p/0%p — Pic(C) 5 Pic(C') — 0
PeC

where Op be the integral closure of the local ring Op at P. In particular,
f* maps Picg(C) into Picy(C").

LEMMA 2.2. Let f: V — W be a morphism of varieties, and let
p: V' =V and \: W' — W be the normalizations of V and W respec-
tively. Then there exists a morphism f': V' — W' such that Aof' = fou.

Proof. See (3] (Chap.2 , 2.14).

THEOREM 2.3. Let C be a projective curve over a field K. Then there
exists a natural homomorphism

Pico(C) — {real valued functions on C}/O(1)
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given by ¢ h.. Furthermore if p: C1 — Cj is a morphism on projective
curves, and ¢ € Pico(Cy) such that p*c € Pico(Cy). Then we have

o~

peal

ore = heop+O(1)

Proof. Let f: C' — C be the normalization. Then for ¢ € Pico(C),
f*c € Picg(C') by Lemma 2.1. Let Py, P, be two distinct points in
f~Y(Q). Then

heo f(Py) = he.o f(Py) = h(Q)

but

heo f =hg. mod O(1)
= hs( ,S(f*c)) mod O(1)
where S is the isomorphism of Pico(C') and the Jacobian J of C'. Thus

he(Q) = he o f(P1) mod O(1)
= hs(P1, S(f*c)) mod O(1)

and

he(Q) = he o f(P2) mod O(1)
= hs(Py, S(f*c)) mod O(1)

Thus hs(P,S(f*c)) is independent up to bounded functions for any
choice P € f~!(Q). Therefore we take

7e(Q) = hs(P,S(f*c))

for any point P in f71(Q). For the functoriality, we let fi: C{ — Ci
and f2: C4 — C3 be the normalizations of Cy and C; respectively. Let
(J1,61), (J2,82) be the Jacobian varieties of Cj, Cj respectively. Then
by Lemma 2.2 there exists a morphism ¢': Cj — C} such that wofi(P) =
f2 0 ¢'(P). Note that

hooe = he o+ O(1)
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and for each @ € C;, we have

hoo (@) = by (orey0 i(P)+O(1) for Pe f_ll(Q)
= hs, (/i(P), S (f*1(p7¢)) + O(1)
= hee(Q) + O(1)

where S) is the isomorphism of Pico(C}) and J;. Also we have

he 0 9(Q) = he((Q))
= Rhfe,o(¢'(P)) + O(1) since ¢'(P) € f~1,(0(Q))
= hs,(¢'(P), Sa(f75¢)) + O(1)
= he((Q)) + O(1)

where Sy is the isomomorphism of Pico(C%) and J;. Therefore we have

hygre = he oo + O(1).

3. Néron functions on singular projective curves

On a projective variety, a Weil function associated with a divisor is de-
fined only up to a bounded function. However on an abelian variety, this
is defined up to a constant functions I' satisfying sonie properties. Func-
tions normalized as such are called Néron functions. The Weil functions
on arbitrary complete non-singular varieties associated with divisors are
obtained by pull back from abelian varieties. However, the divisors are
restricted those which are algebraically equivalent to zero. Again such
Weil functions are called Néron functions. Having normalized the Néron
functions up to additive constants, we can get rid of these constants if
we evaluate these functions by additivity on 0-cycles of degree zero on
an abelian variety or non-singular projective variety. We then obtain a
bilinear pairing between divisors ( algebraically equivalent to zero on an
arbitrary variety ) and 0-cycles of degree zero. This nairing is called the
Néron pairing (see [5] Chap.10,Chap 11 ).

For a singular projective curve, we have:
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THEOREM 3.1. Let C be a projective curve defined over a field K
and S be the set of singular points on C. Let Z,'(C)x be the set of zero
cycles of degree zero on C rational over K whose supports are disjoint
from S. Then for each D € Zy'(C)k, Ap is uniquely determined up to
constant functions I' satisfying

(1) The association D + Ap is a homomorphism mod T

(2) If D = (f) is principal, then Ap = Af mod T

(3) If: V. — W be a morphism of projective curves defined over
K, and let Y € Zy'(W) such that ¥~ 1(Y) € Z,'(V), than

/\w—l(y) = /\y ] Ib mod [

Proof. Let f: C' — C be the normalization, and let A, ' be two Weil
functions corresponding to D. Then Ao f and A’ o f are Weil functions
on C' associated with the Cartier divisor f*D € Zy(C"). Since C' is
nonsingular and f*D is algebraically equivalent to zero, we have

Aof=MNof modT.
For Q € C, let Py,..., P, be distinct points in 771(Q), then

MQ) = Ao f(Pi)=---=Xo f(P)

and

NM@)=Xof(P)=--=Xof(P)
Therefore, A = ) mod T

COROLLARY 3.2. Let C be a projective curve defined over K such
that C(K) is zariski dense in C. Let a € Z,'(C), f € Zy(C') be two zero
cycles with disjoint supports. Then there exists unique pairing < «, 3 >,
satisfying the following properties.

(1) The pairing is bilinear.

(2) If @ = (f) is principal, then < a,8 >,= v o £(8).

(3) IfB3 € Zy/(C), then < a, 8 >,=< B,a >, .

(4) The function  —< a,(z) — (2¢) >, from C(K) — supp(a) to R
is continuous and locally bounded.
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