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THEORY OF INFINITELY NEAR SINGULAR POINTS

HEISUKE HIRONAKA

ABSTRACT. The notion of infinitely near singular points, classical
in the case of plane curves, has been generalized to higher dimen-
sions in my earlier articles ([5], [6], [7]). There, some basic tech-
niques were developed, notably the three technical theorems which
were Differentiation Theorem, Numerical Exponent Theorem and
Ambient Reduction Theorem [7]. In this paper, using those results,
we will prove the Finite Presentation Theorem, which the auther
believes is the first of the most important milestones in the gen-
eral theory of infinitely near singular points. The presentation is
in terms of a finitely generated graded algebra which describes the
total aggregate of the trees of infinitely near singular points. The
totality is a priori very complex and intricate, including all pos-
sible successions of permissible blowing-ups toward the reduction
of singularities. The theorem will be proven for singular data on
an ambient algebraic shceme, regular and of finite type over any
perfect field of any characteristics. Very interesting but not yet
apparent connections are expected with many such works as ([1],

(8))-

0. Introduction

To investigate the generalized notion of infinitely near singular points
in the cases of all higher dimensions, it turned out in this paper at least
technically that the use of partial differential operators is ubiquitously
indispensable. The differentiation techniques are interesting in its own
right, for instance as was shown by Jean Giraud and others in connection
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with the theory of mazimal contact ([3], [4]). However, it is interesting to
ask if our technique could be replaced by something essentially new that
is perhaps arithmetically intrinsic and algebraically abstract. At any
rate, before talking about the generalization, let us review the classical
cases of plane curves, which will at least illuminate the essence of our
basic ideas and our own point of view that led us to higher dimensional
version of infinitely near singularities.

Let k be any perfect field and Z = Spec(A) where A = k[z,y| with
two variables  and y. Let X = Spec(A/fA), a curve defined by an
equation f(z,y) in the plane Z. For a point £ € X, let m = m¢(X)
be the multiplicity of X at ¢, i.e., the order ord¢(f) of the defining
polynomial f in the local ring A¢. Classically the infinitely near singular
points of X at £ means those m-fold points which appear in the strict
transforms of X obtained by successive quadratic transformations, or
blowing-ups, whose centers are all m-fold points corresponding to &.
For the sake of simplicity, let us assume that £ is an isolated m-fold
point of X. Firstly, blow-up with center £. If we find any m-fold point
&y of the strict transform X; € Z; of X C Z which is mapped to &, then
we know that £; is unique. Next, blow-up with center £; and if there still
exists an m-fold point & of the strict transform Xy C Z5 of Xy C Z;
then blow-up with center £;. Continue the process as long as we find
an m-fold point in the transform, and we find the process terminates
after a finite number of succession. So, we get a unique finite succession
of m-fold points, beginning with £, where the most important invariant
is 6 = 6¢(X), which is the number of the m-fold points mapped to £
including £ itself. The blowing-up diagram is as follows:

ZS—) ZS—l —_— s - Zl — ZO:Z
965_1 961 9€0=§

where the &; are m-fold points of the successive strict transforms X; C Z;
of Xo = X C Z and there are no m-fold points of X3 which are mapped
to &5_,. The first naive question is to ask when two curves through
¢ have the same number § of infinitely near singular points, or more
strictly, to ask when two curves have the same blowing-up diagram as
above.

Let us take a simple experimental case in which £ is the origin (0, 0)
and f = y™ — ! where m,[ are integers such that 1 < m < I. We are
excluding the case in which f is an m-th power of another polynomial.
Incidentally, the number {/m is called the first characteristic exponent
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of X at & which we denote by 6¢(X). We have m¢(X) = m. By blowing-
up with center £, we can have at most one point of multiplicity m of
the transform of X which is mapped to £. If such a point should exist,
then it must be the origin, say &;, with respect to the coordinate system
(z,y/x) = (x1,y1), and the equation of the strict transform X; of X
is fi = 9" — :cll_m where | — m > m. Moreover, we then blow-up
with center &;. If we could repeat such a blowing-up r-times, then the
equation of the final transform would be f, = y™ — 24" while the
only possiblity of a m-fold point &. of X, is the origin of the coordinate
system (z,,yr) = (@r—1, Yr-1/%r-1). It is therefore clear that the origin
is no longer an m-fold point, i.e., 7 = § in the above sense, if and only
ifl—(r—1)m>m>l—rmorl/m2>r>1/m—1 We thus conclude
§ = [I/m] = [6¢(X)}, where [ ] means integral part.

For a general plane curve X whose first characteristic exponent d¢ (X)
is attached to an isolated m-fold point &, the number of inifinitely near
singular points of X at ¢, denoted by §, is equal to the integral part
[6¢(X)]. The rational number J¢(X) itself cannot be deduced from the
number of infinitely near singular points or from the blowing-up diagram
as above. But there exists a method of telling the number 6¢(X) exactly
by the generalized blowing-up diagrams. The method is precisely what
is formulated as Numerical Ezponent Theorem in all dimensions and
characteristics. Here, however, we want to show the essence of the idea
in a very special case.

So, once again for simplicity and clarity of the idea, we take the
case of a plane curve X defined by an equation of the form f = y™ —
z!. Let £ = (0,0). Pick an indeterminate t with respect to A and
let Z) = Spec(Ap) with Ay = A[t] = k[z,y,t]. The equation f for
the curve X may also be viewed as an element of Ay and defines a
cylinder X}, over X, i.e., the product of X and the affine line Spec(k[t]).
Let Lo be the line Spec(Ap/(z,y)Ap), along which X has multiplicity
m = me(X). Let & be the k-point of Ly with ¢ = 0, or & = (0,0,0).
Now take the blowing-up Z] — Zj with center & and we get strict
transforms X7, L; of X, Lo respectively. Let & be the point of L;
which corresponds to £). It is the origin of (x1,y1,t) with z; = =/t
and y; = y/t, which is one of the coordinate charts for Z]. Now the
transform X is defined by the equation f; = f/t™ = 4" — zt#=™ and
clearly has the same multiplicity m. Take the blowing-up Zj — Z] with
center &} and we get strict transforms X3, Ly of X7, L1 respectively. Let
¢, be the point of L corresponding to &}, where X is defined by the
equation fo = f1/t"™ = yi* — xétw—m) and blow-up with center &. We
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thus repeat the process r-times and get a point £, € L, C X C Z]
where X! is defined by an equation f, = y™ — zLt"(=™), Now, fix
any one 7 >> 1 and let Y, be the last exceptional curve in X, that is
Spec(A,/(yr, t)A}) where A} = k[z,,y,,t]. Take the blowing-up Z] , —
Z] with center Y,. Let 7. be the generic point of ¥,. Then all the
points of the strict transform X ; of X; which correspoind to 7, are
contained in the affine chart with coordinate system (z,, yr1,t) of Z] 1,
where yr1 = yr/t, and the equation of X;’l is fra=y1 — xlrtr(l‘m)“m.
Hence, so long as r({ —m) —m > 0, there exists one and only one point
Nr1 € X,,’,’1 corresponding to 7, which is the generic point of the unique
smooth curve Y, ; corresponding to Y;. If X;,1 has multiplicity m along
Y1 or equivalently r(I — m) —m > m, then we take the blowing-up
Zyy — Z;, with center Y,; and obtain 7.2 € Y,2 C X, , with the
equation fr2 = yy — a:lrtr(l_m)'%‘ with yr2 = yr1/t. We repeat this
process untill the exponent of ¢ goes down to less than m. After s-
times repetition, we would have 0., € Y.s C X,'n’s with the equation
fris = U — ghtr=m)=sm with y. s = yrs_1/t. The maximal number
for s called s(r) which is a function of r is determined by the condition
0 < r(l—m)—s(rym < m. In other words, 0 < {/m—(s(r)/r+1) < 1/r
which implies lim, o (s(r)/r + 1) = [/m = 6¢(X). In other words, the
first characteristic exponent 6¢(X) itself is determined by the blowing-up
diagrams:
Z:',s('r) - Z;',s('r)—l - Z1/‘,0 = Zvl'

U U

Yr,s(r)—l )/’”70 =Y
combined with

Zi— Zi, o Ty - I
> > >
€, & &
for all » > 1.

It can be proven with a little harder work that the same result as
above can be obtained for an arbitrary plane curve.

1. Idealistic exponents and their equivalences

In order to state our general Numerical Exponent Theorem, we need
a generalization of the notion of infinitely near singular points, or rather
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a general notion of permissible blowing-up diagrams in all dimensions.
To begin with, we are assumed to be given a smooth algebraic scheme
Z over a perfect field k£ of any characteristics. An idealistic exponent
E = (J,b) on Z is nothing but a pair of a coherent ideal sheaf J on Z
and a positive integer b. When Z is an affine scheme, say Z = Spec(A4),
we will identify J with the ideal in A which generates J. We will consider
a finite system of indeterminates t = (t1,t2,...,t,) and let Z[t] denote
the product of Z and Spec(k[t]) over k. We also let E[t] denote the pair
(J[t], b) where J[t] denotes the ideal sheaf on Z[t] generated by J with
respect to the canonical projection.

DEerFINITION 1.1. A local sequence of smooth blowing-ups over Z,
called LSB over Z for short, means a diagram of the following type:

(1.1) Ze— U1 Clpq —--—> UhCZhy — UyCZy=2
U U U
D, Dy Dy

where U; is an open subscheme of Z;, D; is a smooth closed subscheme
of U; and the arrows mean that Z;,; — U; is the blowing-up with center
D;, Vi.

DEFINITION 1.2. We now want to define the notion of permissibility
of LSB for a given idealistic exponent E = (J,b) on Z. For this to be
done inductively, it is enough to have two notions for a single blowing-
up, one being that of permissibility for a blowing-up and the other being
that of the transform by a permissible blowing-up. For an open subset
Uy C Z, we simply replace E by its restriction £| Uy = (J|Up, b). So it
is enough to consider the case of Z = Uy. First of all, we define Sing(E),
called the singular locus of E, to be the following closed subset of Z:

Sing(E) = {n € Z|ord,(J) > b}.

A blowing-up Z; — Z with center Dy is said to be permissible for E if Dy
is smooth and contained in Sing(F) and the transform E; = (J1,b) of E
is defined by saying that J; P? is equal to the ideal sheaf on Z; generated
by J with respect to the blowing-up morphism Z; — Z, where P denotes
the ideal sheaf of the exceptional divisor, i.e., the locally principal ideal
sheaf on Z; generated by the ideal defining Dy C Z. Note that J; is
uniquely determined by the above equality and that it exists as an ideal
sheaf in the structural sheaf Oz, of Z;.

DEFINITION 1.3. For a pair of idealistic exponents E; = (J;,b;),7 =
1,2, we define the inclusion:

FE, C Ey
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meaning to satisfy the following condition: Pick any finite system of
indeterminates t = (t1,...,t,) and let Ei[t] = (Ji[t], b;),i = 1,2. If any
LSB over Z[t] in the sense of Definition 1.1 is permissible for E1[t] then
it s also permissible for Es|t].
The equivalence:
E, ~ Ey

will mean that Ey; C E3 and Ey D E5 at the same time. The equivalence
of the form E; N Ey ~ E3 will mean that an LSB over Z[t| for any ¢ is
permissible for E3(t] if and only if it is so for both Ei[t] and Es[t]. An
idealistic exponent E may be understood as the totality of all permissible
LSB for E|t] for all ¢.

DEFINITION 1.4. For an idealistic exponent E = (J,b) on Z, we
define its order at a point £ € Z as follows: ord¢(E) = orde(J)/b if
ordg(J) > b, and ord¢(E) = 0 if ordg(J) < b. So we have

Sing(E) ={{ € Z | ord¢(F) > 1}.

What follows are most of the important basic facts about idealistic
exponents. They will be later refered to as Basic 1, Basic 2, and so on.
Their proofs are either easy to reconstruct or found in my paper [7].

1. (J¢,eb) ~ (J,b) for every positive integer e.
2. For every common multiple m of b; and bs, we have

(J1,b1) N (Ja,b2) ~ (I + T2, m).
In particular if b = bo = b (= m) and J; C Jy then we have
(J1,b) D (J2,b).
3. We always have

(J1J2, b1 + b2) D (J1,b1) N (J2, ba).

The reversed inclusion does not hold in general. However, if
Sing(J;, b; + 1) are both empty for ¢ = 1,2, then the left hand
side becomes equivalent to the right hand side. Moreover, we al-
ways have

(J,b) C (Jk,bk),l <k<r,
= ()~ (] Jes D be)
1<k<r 1<k<r

4. Let us compare two idealistic exponents having the same ideal but
different b’s, say Fy = (J,b1) and Fy = (J,be) with b1 > be. Then
we have
(a) F, C Fs.
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(b) For any LSB permissble for Fy, and hencé so for Fa, their
final transforms differ only by a locally principal non-zero fac-
tor supported by exceptional divisors. To be precise, their
final transforms being denoted by Ff = (J{,b1) and Fy =
(J5,b2), we have J5 = M J; where M is a positive power prod-
uct of the ideals of the strict transforms of the exceptional
divisors created by the blowing-ups belonging to the LBS.

. We have (J1,b) D (J2,b) if J; is contained in the integral closure of

Jo in the sense of integral dependence (after Oscar Zariski) defined

in the theory of ideals. Recall the definition: For ideals H;,7 = 1, 2,

in a commutative ring B, H; is integral over H» in the sense of the

ideal theory if and only if 3 ., H{T* is integral over } -, H3T*
in the sense of the ring theory, where T is an indeterminate over

B. In our case, since Z is normal, if p : Z — Z is any proper

birational morphism such that Z is normal and J20 is locally

non-zero principal, then the direct image p.(J20}) is equal to the

integral closure of J3, where O; denotes the structural sheaf of Z.

As an example of such p, we could take the normalized blowing-up

of J2, i.e., the blowing-up followed by normalization.

. Here is one of the most important technical facts about idealistic

exponents with respect to blowing-ups. We cite it as a theorem as

follows.
Let Oz denote the structural sheaf (i.e., the sheaf of functions)

of the scheme Z and let Dif fg ) denote the sheaf of the differential
operators from Oz into itself whose orders are < i. The sheaf has
a natural structure of a left Oz-module.

THEOREM 1.1 (Diff Theorem). (cf. Theorem 1, section 8, [7])
If D is any left Oz-submodule of Diffg) then we have

(J,b) C (DJ,b—1)
or equivalently
(J,b) N (DJ,b—1) ~ (J,b).

. There is another important fact about idealistic exponents that

was hinted earlier by experimental examples, and here is a general
statement.

THEOREM 1.2 (Numerical Exponent Theorem). (cf. Proposi-
tion 8, section 2. (7]} If E1 C E; in the sense of Definition 1.3,
then we have

ord¢(E1) < ord¢(E»)
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for every point ( € Z. It follows that
(El) ~ (Ez) = Ordc(El) = OI‘dC(Ez)
for every point { € Z.

Finally we have a theorem that is technically useful for cutting
down the dimension of the ambient scheme. Let W be any closed
subscheme of Z and define

Redw (E)= () ((DiffY ) 1) Ow, b — 5)

0<j<b
which is obviously an idealistic exponent on W.

THEOREM 1.3 (Ambient Reduction Theorem). (cf. Th. 5, sec-
tion 8, [7]) An LSB over W is permissible for Redw (E) if and
only if it is so for E when it is naturally extended to an LSB with
the same centers over Z.

Here the natural extension of LSB is done according to the
general fact that the blowing-up of a subscheme is embedded into
the blowing-up of the ambient scheme with the same center, as
the former is identified with the one induced by the latter into the
strict transform of the subscheme.

2. Main theorem ‘“finite presentation”

We are now ready to state the main theorem of this paper. Let Z be
a smooth algebraic scheme over a perfect field k. We will assume that
Z is connected and hence irreducible, because we loose no generality by
doing so. Given an idealistic exponent £ = (J,b) on Z, we define a
graded Oz-algebra

(2.1)

Z Jmax(a) T*

0<a<oo

to be the sheaf of graded Oz-algebras on Z associated with:
Uvr— py(E) = Z Jmax(a)yT? for each affine open U C Z

0<a<o0

where T is an indeterminate and Jiax(a)y is an ideal in the affine ring
Ay of Z\U, defined by the following property: for every integer a > 0
and for an ideal I in Ay, we have

(I,a) D (Jy,b)=Ey <= ICJnax(a)v
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where Ey denotes the restriction of E to U and the first inclusion is in
the sense of Definition 1.3 while the second in the set-theoretical sense.

It should be noted that if E ~ F with another idealistic exponent F
on Z then p(E) = p(F), which is clear from the above definition. It
should also be noted that if there are two ideals I;,7 = 1,2, in Ay such
that (I;,a) D Ey for both i = 1,2, then we have (I; + I2,a) D Ey by
Basic 2. Therefore, for each a > 0, we have the unique maximal one
among all those ideals I which have the above property. The maximal
one is Jpax(a)y and Jpax(a)y itself has the property. It should be under-
stood that Jyax(0)y is the unit ideal, irrespective of U. Moreover, the
property implies that (Jmax(a)v,2) O Ey and Jmax(a1)vJmax(a2)v C
Jmax(a1 + a)y for every a > 0 and a; > 0,5 = 1,2, by Basic 3. This
is why p(E) is an Oz-algebra. Let us note that Jnax(a)y C Ay is inte-
grally closed in the sense of ideal theory thanks to Basic 5 and the above
definition. We will later see a stronger result than this.

Let us introduce the auxiliary definitions as follows:

pu(E) () = Z Jmax(ap)uT™
0<a<oo

p(E)(n) = Z Jmax(ap)T*  for each integer u > 1.
0<a<oo

For every a > 0 and for every p > 0, we have (Jpax(a)v)* C Jmax(ap)y
which implies that every element of Jnax(a)yT?is integral over py(E)(u)
in the sense of the ring theory. In short, oy (F) is integral over py (E) ().
It is easy to see that all those py(E)(p), x > 1, have the same field of
fractions which is K(T') where K denotes the function field of Z. We
claim that, in the sense of the ring theory,

(2.2)  py(FE) is the integral closure of py(E)(u) in K(T), Vu > 1.

In fact, Ay[T) is integrally closed and any polynomial equation in K|[T']
splits into its homogeneous parts in terms of the variable T'. Hence the
integral closure of py (E)(p) is contained in Ay[T) and graded in terms
of the non-negative powers of T. So, what we need to prove is that

Jmax(@)y = {h € Ay|hT* is integral over py (E)(u)}.

To prove this, let H denote the right hand side which is an ideal in Ay.
First of all it is clear that we have H D Jyax(a)y because (Jyax(a)v)* C
Jmax(ap)y and hence (hT%)* € Jmax(ap)yT™,Vh € Jmax(a)y. As for
the converse inclusion, pick any A € H. We then have a monic equation
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of the form

(AT + My (hT*)" ' 4.+ M; =0 where
M; € Jmax(aj)uT¥,Vj, and M; =0 if aj Z0 mod .

The equation also means that AT is also integral over Ay[Mj,..., M)].
Let A be the product of those aj subject to the conditions: 1 < j <1
and aj =0 mod p. Write A = adu with a positive integer §. All those
non-zero M; are integral over Ay[Jmax(adu)yT%#] and hence so is hT@.
It follows that (hT%)% is integral over Ay |[Jmax(@dp)yT®*]. This implies
that A% is integral over Jiax(ad p)u in the sense of ideal theory. We know
that the latter is integrally closed and hence we get h®* € Jynax(adu)y.
Here the number § can be replaced by any one of its positive integral
multiples. Since H is finitely generated, we may assume that H%* C
Jmax(adp)y. Thus (H,a) ~ (H*, adu) D (Jmax(ap)y,ap) O Ey which
implies H C Jpax(a)y. Hence H = Jpax(a)y, which is the assertion
(2.2). ‘
Now we claim the main theorem of this paper as follows:

FINITE PRESENTATION THEOREM. The ideal sheaves Jmax(a) are
all coherent on Z for all integers a > 0 and p(E) is locally finitely
generated as Ogz-algebra. Therefore, on each affine open subset of the
ambient scheme Z, p(FE) is finitely generated as k-algebra.

Note that if we take an affine open subset U = Spec(Ay) of Z, then
we have p(E)(U) = Y, Jmax(a)uT®. This is a finitely generated as k-
algebra if and only if it is so as Ay-algebra because Ay itself is a finitely
generated k-algebra.

The rest of the paper is devoted to a proof of the theorem. For this
purpose, we need some technical definitions and lemmas.

DEFINITION 2.1. For an idealisitic exponent F = (H,b) on Z, we
say that F is Diff-generated by a system of idealisitic exponents G; =
(I;,6;),0 < j < 1, if for every integer 1 > 0 and for every integer
1,0 <4 < by, we have

(2.3) DiffPmr 3 (H Ijj).
Y ebi>bu—i  J

Here the big summation is taken for all those systems (eg,...,e;) of
integers e; > 0,V7, which are subject to the condition ZOSJST ejb; >
bu — 1.
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REMARK 2.1. The conditions (2.3) for u > 1 are consequences of the
one for = 1. In fact, for 4 > 1, we have

. # .
DiffPE* C 3 [] Diffs e

ikZO,Vk,( Z:lik)=i k=1

S SE 1 (D ST 1 )

>0V, (Ch_ k)=t k=1 "} ex;bj2b—ip  J

< ¥ (= @)

>0k, (K k)=t X, erjbj2b—ix J
< > (IIw)
2 jesbi=bu—i J
where e; = >, ex;. The claim is proven.

REMARK 2.2. If (Hg,ck), k = 1,2, are all Diff-generated by one sys-
tem G; = (I;,b;),0 < j < r, as above, then so by the same system are
the following:

(H1Hy,c1 + ¢), (H{",mc1),Vm > 0, and
(DiffPH1, ¢ — 1),¥1,0 <1 < by,
In fact, for the first one, the proof is by:

Dif f$) (HyHy)
c S DiffV(H)Diff5? (Ha)
11 +i0=1

- (% @) = @)

11+i2=1 Zj eljijCl—-il Zj ezjijCQ—-ig ]
c > (II%)
Y eibi2(citen) i J

For the last one, the proof is immediate thanks to Remark 2.1. The
others follow.

DEFINITION 2.2. We say that F = (H,b) is Diff-full if for every
integer 3,0 < i < b,

(Dif fg H )b is contained in the integral closure of H°*
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in the sense of the ideal theory, which is equivalent to saying that if
¢ 1 Z — Z is the normalized blowing-up of the ideal sheaf H then

(DiffY'H) 0, c HY 0,

LEMMA 2.1. Assume that F = (H,b) is Diff-generated by a system
of idealisitic exponents G; = (I;,b;),0 < j < r, in the sense of Defini-
tion 2.1 and that G; D F in the sense of Definition 1.3 for all 7,0 < j < r.
Then, for every positive integer u, we have

1 F ~ @#H) ~ ) (Hlfj,bﬂ)
2jebizbuy g

and moreover for every smooth subscheme W of Z we have

(2) Redw(H*,by) ~ [ (I;Ow, b;).

0<j<r
Proof. For every integer pu > 0,
(H*bp) ~ () (H HY4,b( 6jbj))
(2 est)zbu 7 7
c N (I eb)
(2 es05) 2t g

~ N (HI;]', (Zejbj))
(Zyests)2u 7 J

© N @
(T;ests)2bu I

where the first inclusion is by the second assertion of Basic 3, the last
by Basic 4 and the equivalences by Basic 1. On the other hand, by the
Diff-generation assumption, we have

.
HY o )] ( I1 Ijj)
(Zjests)2bn 7
which implies the reversed inclusion:

(H",bu) > ( 3 (1;[1?), bp).

(Ej ejbj)ZbH
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We have thus obtained (1). Now for (2), we have
Redy, (H", by)
N (DirfPE"ow, bu-i)

0<i<by

N(C Y Tow w-i)

0<i<bp (32 e505)2bp—i j

- N ( X (yow, wu-i

0Zi<bp (30 ejb; )>bu—i

~ N (szfow, bu—i)

o<i<bu, (T eb;)2bu—i 7

) ﬂ (I;II;j(QW, Xj:ejbj)

0<i<by, (3; ejb; )2bu—i

> N (NEPow aw))

0<i<bp, (3 e5b;,)2bu—i  J

N N (N@ow, b))~ N (0w, b

0<i<by, (3 €505 )2bu—i J

U

where the first inclusion between idealisitic exponents is due to the re-
versed inclusion of ideals by the Diff-generation, while the second in-
clusion by Basic 4 and the last by the Basic 3. On the other hand,
since F' C G; we get Redw (F') C Redw (G;) for every j by the Ambient
Reduction Theorem and Definition 1.3. Hence we have

Redyy (F) C N; Redw (G5)
.o ok
= ﬂ05k<bj ( (szfé )Ij)OW,bj —k)
- ;(I;0w, b;)
which shows the converse to the preceeding inclusion and (2) is proven.

a

LEMMA 2.2. Any given idealistic exponent E = (J, b) on Z is Diff-
generated by the following system of idealisitic exponents:

{ (Dz'ffg)J, bj),ogi< b}
where b; = b — i. Moreover, define
E = (J%, %)
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where 9
= 3 (pifs7 ) and b = b
0<i<b

and we assert that EV is Diff-full.

Proof. As for the first claim, the problem is local. Namely, it is
enough to prove the inclusion of the type of Definition 2.1 locally at every
point ¢ € Sing(E). It should be noted that at a point outside Sing(E)

one of the ideals Dif fZ J, 0 <1< b, is the unit ideal and the claim is
trivial. Let us pick a regular system of parameters z = (z1,...,Z,) in
the local ring of Z at £ and define the elementary differential oporators
Ou, o € L, where n = dim¢ Z, by the conditions:

5.8 { Q)P fBecatiy
. 0 if B¢ o+ 73

Let 1 be any positive integer. For every integer i,0 < ¢ < bu, pick any
one O, with |a| = ¢. Then

oIt © > (I ouk)

=37 <<y Ok OKEDLY  1SkSp

and for each (a1, ...,q®,) we have
I %ade c [ Dirrdd) < I (Diffdr)®
1<k<p 12520 min(é,b—1)>52>0

where ¢; is the number of those oy such that |ag| = j. Here an im-
portant point is that me(i,b—nzjzo ejb; = stn(i,b—nzjzo ej(b—7) >
D ini>0€i(0—=7) = isj>0€)b— 2isin0 €5J = b — |af = bu— 1. This
numerical inequality and the last product ideal are unaffected if we ex-
tend the range of j to b—1 > j > 0 in the case of i < b —1 and let
e;j = 0 for j > i. Therefore, thanks to the numerical inequality, we get

Mo ¢ 5 (11 @)
1<k<pu ( Do;<seibi)Zbu—i  0<j<b
This being true for all @ and (o, ..., o,) as above, we conclude that
Diff$ It 3 ( II (pirsd7e)%).
( Xogjcpeibj)2bp—i 0<j<b

This being true for every £ € Sing(F), the same inclusion holds when
the suffix £ is dropped. The first assertion of the lemma is thus proven.
Next, to prove the second assertion, let p : Z — Z be the normalized
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blowing-up of the ideal sheaf J #. Let us pick any point ¢ € Z and let
¢ = p(¢) € Z. Since the pull back J#OZ is locally non-zero principal
everywhere, there exists an index ¢ such that

(Diff(L)J)b!/(b’i)(’)~ : is non-zero principal, say = (hg)(’)z,g
2. (J* C’)Z)C (h )(9 2¢ and
3. hg divides (Dif ) 1)"/ M0, -, Vk,0 < k < b.
We will later refer to these as properties of the chosen hé‘ Now, by the
definition of J¥, we have the following inclusions for 0 < m < b!

(Dif 5 “) Oz¢

Z (szfé (lef(J)J)b/ —J)>O Iy

0<i<b

-y = [T Difs™Diss§)oz

0<7<b M 1 <hcpryo—ygy Mis)=m 1SEZB/(b—5)

= Z( 3 I1 Diffgmmu)oz,é

0<5<b M1 <k<br/(o—g) Mu)=m 1<k<b!/(b—j)

= 2 ({SI pus2)os;

0<j<b

N

where the sum inside ( )0 ranges over all the systems (m1,...,

M1/ (b—j)) With integers my, > 0 such that >, my = m, while {ZH}
means that the sum-product has the same ranges as above but the term

Diff, (me+d) 7 i replaced by the unit ideal if and only if my+j > b. Note
that for any j and for any system (mz,..., M p—j)), it is impossible
that my, + 7 > b for all k, for if otherwise we would have

m= ka>2b 5) = (b1/(b~5))(b—35) = bl

which contradicts the assumption m < bl. Moreover note that for every
(m1,...,Mpyp—j)), say = (m), appearing in the above sum-product we
have

Bl—m=(b/(b—7)b-7) =Y mr=> ((b—7) —m)
k

k
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=Y (b-tme+5))< D (b—(mu+7)).

k kmp+ji<b
Call this last number B,,). Then, thanks to the above properties of the
chosen hé, the summand, localized at ¢,

I Dirfg™ 50,
kmg+j<b

in the above sum-product ({ }) should be divisible by hB(’" /o

means, more rigorously, that

( H sz (mk+J)J ) 2

kmg+j<b

, which

is divisible by hig(m) and hence by h’l!_m. We thus conclude that

(Dz f f(m)Jﬂ) 7, s dibisible by h¥~™. But this A~ is the gen-
erator of (JIO; )b'_m by the propertzes of h;. Namely, w1th bt = b,

(Dif i) 055 (PO,

~ bt
This being true for all m and for all {, we conclude that (Dz' ffs (m) y ﬁ) is

contained in the integral closure of (J#)¥~™ for all m, i.e., E¥ = (JH4 %)
is Diff-full. The proof of the lemma is now all done. (I

LEMMA 2.3. Given E = (J,b) on Z, let E* = (J*,b%) be the same as
in Lemma 2.2. Then for every discrete valuation ring R of rank one with
¢ = max(R) and for every morphism ¢ : Spec(R) — Z such that the pull
back J'R of J* by ¢ is not the unit ideal of R, we have ¢(¢) € Sing(E)
and ordf(JﬂR) > ordqb(é)(ﬂ) > b

Proof. Let C be the closed irreducible reduced subscheme of Z whose
generic point is ¢ = ¢((). Let 7 : Z; — Z be the blowing-up with center
C. We then have a morphism 1 : Spec(R) — Z; such that ¢ = 7o 2.
Let 1 be the generic point of 771(¢), i.e., that of the exceptional divisor
for m, and let 77 = () € Z;. Note that 7 is a smooth point of Z; and
also such of the exceptional divisor. The local ring Oz, , is a discrete
valuation ring of rank one and ord,(h) = ord¢(h),Vh € Oz;. We thus
have

ords(J'R) > ordz(J'Oz,) > ord,(J*Oz,) = ord¢(J*).
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So it is enough to prove that if ordg(ﬂ) > 0 then ordC(Jﬁ) > bl ie.,
¢ € Sing(E"). Assume ord¢(J*) < bl. We then have ord¢J < b for if
otherwise we would have ordc(Diffg)J) > b—1,Vi and ord¢(J%) > bl.
Let e = ordcJ. Then ordg(Dif f&7) = 0, ie, Dif fSJ; must be
the unit ideal in Oz¢. It follows that ord(J*) = 0. This proves the
lemma. O

LEMMA 2.4. If E = (J,b) is Diff-full, then for every smooth sub-
scheme W C Z we have Redw (E) ~ (JOw,b).

Proof. By the Diff-fullness , (Dif f g )y )? is integrally dependent upon
J*3. Tt follows that (Dif fg)J)b(’)W is integrally dependent upon
J*=IOy . Hence

Redw(E)= () ((Diff$7)Ow,b—j)

0<j<b—1

~ ) (Dif 9D 0w, b - )
0<j<b-1

> [ (S*70w,bb-j5) ~ (JOw,b)
0<j<b-1

where the first equality is by definition and the inclusion is by the integral
dependence. But the first intersection has the term with 5 = 0, which
is nothing but (JOw,b). Hence the reversed inclusion is trivially true.
The proof is done. O

3. Proof of the main theorem

First of all we remark that E = (J,b) may be replaced by any other
idealistic exponent F' = (K,c) ~ E, because we have the implication
E ~ F = o(E) = p(F). Hece we may replace E by E* of Lemma 2.2
because E! ~ E by the Diff Theorem and by Definition 1.3. Thus, we
may and will assume:

i) E itself is Diff-full in the sense of Definition 2.2. (The Diff-fullness
of E* is by Lemma 2.2)

i) there exist G; = (I;,b;) D E,1 < j < r, such that E is Diff-
generated by the system G;,1 < j < r, in the sense of Definition 2.1.
(The Diff-generation is by Lemma 2.1, where G; = (Diffg)J, b—j), 0<L
J < b, and the inclusions are by Diff Theorem)
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i17) for every discrete rank one valuation ring R and for every mor-
phism ¢ : Spec(R) — Z with JR # R we have that Im(¢) N Sing(E) is
not empty (this is by Lemma 2.3 for E¥).

Let p : Z — Z be the normalized blowing-up of the ideal sheaf J,
so that Z is normal and JO; is locally non-zero principal. For brevity,
we will write D; = Diffg)J, 0 < j < b. Since F is Diff-full, we have
D0 C J* 704 and hence D03 is divisible by J*~7O; because the
last ideal is locally non-zero principal. Let us make clear what we want
to prove under the assumotions 1), #) and #%). Following the notation
in the definition of p(E), we want to prove:

()  Jmax(bp) = p«(J*O}) for every integer p > 0.

Before going to prove (b), let us first see that if it is proven then the main
theorem follows. This implication is seen as follows. The question is local
in Z and we will assume that Z is affine, say Z = Spec(A). We have
Jimax(@)? C Jmax(ba) by their definition and we know that p.(J?0j) is
integral over J in the sense of the ideal theory. If (b) is proven, then for
Vg € Jmax(a), g° is integral over J? in the sense of the ideal theory. This
is equivalent to saying that (¢7° )b is integral over the graded algebra
E;po JHTO in the sense of the ring theory. Let P(E) = Zu>0 JHTH,
In view of Basic 5 and the fact (2.2), we can conclude: -

©(E) is equal to the integral closure of the k-algebra P(E)
in the field of fractions K of A[T].

Here, since K is finitely generated as a field over k and P(FE) is finitely
generated as k-algebra, it follows from the general theory of commutative
algebra that the integral closure p(FE) of P(E) in K is a finite P(E)-
module and hence p(FE) is finitely generated as k-algebra. Thus (b) is
all that remains to be proven.

Let us now proceed to prove (b). Let 7;,1 < ¢ < s be the generic
points of the subscheme of Z defined by the ideal J 0. Since Z is
normal and JOj is locally principal, they are all smooth points of Z.
We can find an open affine subscheme U = Spec(A) of Z such that we
have 7; € U,Vi, and U is smooth. Since A is finitely generated as k-
algebra, we can choose a finite set of indeterminates ¢ = (t1,...,%,) such
that there exists a surjective k-algebra homomorphism X : k[t] — A.
Combined with the canonical inclusion A < A, A naturally extends to
a surjective homomorphism A : Aft] — A. Let B be the kernel of A
and let W = Spec(A[t]/B), which is a smooth subscheme of Z[t]. It is
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naturally isomorphic to U. By definition, we have

0<i<b

= N (((Dz'ffg)mt])ow,b—j)
0<j<b

= N ((szf‘”J)og,b—j)
0<j<b

where the last equality is by the isomorphism A[t]/B ~ A. By iii), the
images 7; = p(};) are all in Sing(E) and hence ordg, (JOp) > ordy, (J) >
b,Vi. Viewing 7; as points of W C Z[t] as well as of U, we see that

ords, (Redw (E[f])) = min {ords, ((Dif £ 7)0g) /(b ~ )}
> amin {ordy (Dif 1P 1)/ (0~} 2 1

and hence we have 7; € Sing(Redw (E]t])),Vi. Now pick any idealistic
exponent F' = (H,c) ~ E on Z. We then have

ords, (HOp)fe = ords (H[|Ow)/e > ords, (Redw (FIt)))

= ordy, (Redw (E[t])) = ords(JOy)/b, Vi.

Here the first equality is by A[t]/B ~ A and the second inequality
is by the definition of Redy expressed as an intersection of idealistic
exponents including (H{[t],c) itself. The equality before the last, fol-
lows F' ~ E by the Numerical Ezponent Theorem and the Ambient
Reduction Theorem. Finally the last equality is by Lemma 2.4 thanks
to the assumption i). Now, apply the above inequality to the case of
F = (Jmax(but), bu), p > 0, and we get

ordy;, (Jmax(bit)Op ) /bp > ordyz, (JOy)/b, Vi
which implies Jinax (bp) Oy ;. is divisible by JEOp -, Vi, because the local
ring is a discrete rank one valuation ring. Slnce J“(’)U is locally non-
zero principal everywhere on a normal scheme and the {7;} are all the
generic points of Spec(O;/JO3), it follows that Jmax(bu)O 5 is divisible
by J¥O;. In particular, we have
Jmax(b,u’)OZ c J#OZ,VM > 1
However, by the maximality of Jyax, we have
Jmax(bp) O J* and Jmax(bp) = pu(Jmax(bp)O3), Vi > 1
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and hence the above converse inclusion implies
Jmax(bp) 05 = JHO 5 and Jpax(bp) = pu(J#O3),Vu > 1.

This proves (b). We complete the proof of the theorem with an additional
remark which shows the coherency of Jmax(a),Va. The replacement
of (J,b) by (J¥,b%), called f-operation below, is compatible with any
localization of the affine ring A, that is with the restriction from an
open affine set of Z to any smaller one. Moreover, we saw that p(E) is
the integral closure of P(F) in the function field K of the scheme Z. The
integral closure is also compatible with any localization. The coherency
is clear. The Main Theorem is now all established.

REMARK 3.1. From the above proof of the Main Theorem using the
#-operation (cf. Lemma 2.2 ), it is seen that if E = (J,b) and p(F) =
> 0<a<oo Jmax(a)T® then the ideals Jmax(kb?) is integral over Jyax(bH)F

in the sense of ideal theory for all integers k > 0 where b* is the a priori
number bl
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