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ON SINGULAR PLANE QUARTICS AS LIMITS
OF SMOOTH CURVES OF GENUS THREE

PyunGg-LYyuN KANG

ABSTRACT. We compute lim;—o Ct in Mgz of some family : C —
A of plane quartics whose general members are nonsingular.

1. Introduction

We consider a family of nonsingular plane quartics = : C — A* over
the punctured open disk A* = A — {0} of C degenerating to a singular
plane quartic Cy. This family gives a morphism ¢ from A* to the
moduli space M3 of genus 3 smooth curves which extends uniquely
to ¢ : A — Ms from A to the Deligne-Mumford compactification
M3 of M3 parametrizing of all genus three stable curves. The ¢(0)
is called the stable limit of {C:}ica~, or of a family 7 : C — A*, as
t — 0. The stable reduction theorem ({1, 11]) enables us to compute
it. Stable limits depend on Cy as well as a family {C;} degenerating
to Cp. As mentioned in [6], various smoothings may produce many
different stable limits.

In this paper we study the picture between Cy and ¢(0) where 7 :
C — A* is a generic smoothing of Cp (section 3 and 4). We call this
¢(0) the stable limit of the generic smoothing of Cy. Note that generic
smoothing produces a very special stable limit of Cy. It is in general a
difficult problem to find all possible stable limits of Cj.

One can find a nice introduction to stable reductions and stable lim-
its in the recently published book ([6]). Brendan Hassett has recently
made substantial progress on stable limits and related problems ([7,
8]). He has also studied the stable limits of the types in 2.4 in [7]. I
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would like to thank him for his comments and for finding some errors
in the previous version of this paper.

This work was originally motivated by the attempt to construct a
non-trivial one dimensional complete family of plane quartics 7 : C —
B which gives a morphism ¢ : B — M3 ([5, 12]).

In section 2, we explain the stable reduction process. In section 3
and 4, we compute stable limits of reduced and nonreduced quartics
from their generic smoothings, respectively. We work over the field C
of complex numbers.

2. Stable reduction

(2.1) DEFINITIONS. A semistable curve is a connected nodal, possi-
bly reducible reduced curve with no smooth rational components meet-
ing other components at less than two points, and a stable curve is a
semistable curve without smooth rational components meeting other
components at less than three points. By the genus ¢g(C) of an irre-
ducible curve C' we mean the geometric genus, the genus of its nor-
malization. If C is an irreducible curve in a smooth surface S, then
9(C) = g.(C) — Z d(P) where g,(C) is the arithmetic genus of C.

PeC
Here 6(P) can be computed as follows [9]. Let

Sn—f—l_’Sn"'"""—’Sl_"’SO:S

be the sequence of blow-ups obtained to desingularize C at P, f; :
S; — S;—1 a blow-up of S;_; at a singular point of C;_; which lies over
P, C; the proper transform of C;_; under f; and C,,;1 smooth at all
points lying over P, then

6(P)=i S mc, (Pij)(mc, (Pyy) — 1)

: . 2
=0 PyefGy (P)

where f(;) = fiofz0---of; and mc, (P;;) is the multiplicity of C; at F;.
If C is an irreducible plane curve of degree d, then ¢,(C) = ﬁd;}%(iﬁl.
The genus of a stable curve C (or a connected nodal curve) is its
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arithmetic genus here:

g(C)=Zgi+5—n+1

i=1

if C has § nodes and n irreducible components Cy,Cs,--- ,Cy, of geo-
metric genera g1, 92, - ,gn ([6]).

(2.2) We study the Euclidean algorithm of the greatest common
divisor d = (p,q) of two integers p and ¢q. Assume that p < q. If we
put s_1 = q, $p = p, then the Euclidean algorithm is

(2.2.1) si-1 = siri+1 + Si+1, 0 < 8341 < 8y Sg+1 =0for 0 <2 < k.

Note that r7x11 > 2 if K > 1. Then d = (p,q) = si. Define two
sequences {p;}, {g;} by

(222) pa=0,p=1,,pi=pia+parifor1<i<k+1

(223) g-1=1,9=0,---,¢i=g-2+qg1rifor 1<i<k+1.
Note that p; =71y, po =1+172, g1 =1, g2 = rs, etc. Then
(2.2.4) 8 = (—l)i(ppi —qg) for —1<i<k+1.

The case for i = —1 or 0 can be checked easily. Assuming (2.2.4) holds
up to 4, Siy1 = 8i_1 — Sitir1 = (—1)* "1 (Ppi—1 — 9gi—1) — (—1)*(ppi —
q9:)riv1 = (=1)* Y (ppi+1—qgi+1) = si+1. We introduce some formulas
that will be needed in the stable reduction process of a curve with an
isolated singular points of type y? = 2?9 and similar types.

(2.2.5) ri+1(qg; + 8i) + pPi—1 = Ppi+1 for 0 <i < k and i even
(2.2.6) riy1(ppi + s:) +9gi—1 = qqi+1 for 0 < i < k and 7 odd
(2.2.7) Pr+1 = q/d, Qr+1 = p/d.

The formulas (2.2.5) and (2.2.6) can be proved easily by substituting
(2.2.4). For (2.2.7), we use induction on k& where d = si. It is trivial if
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k = 0. Let s; = §;_1. Then the equations (2.2.1) for 1 < ¢ < k can be
written as

Si_1= gifi—i-l + §i+1, 0< §i+1 <38, § =0, for0<i<k-1.

Let s} and p} are defined as p; in (2.2.2) and as g; in (2.2.3) respectively.
Then by induction on ¢, s, = ¢;4+1. Now induction on k implies that
s, = p/d, so that p/d = gg+1. Since 0 = spr1 = (—=1)*(ppry1 —
99k+1), Pk+1 = g/d implies that gry1 = p/d.

In the below we list some properties of p; and ¢; which are used in
2.4. We omit the proofs which follow from the induction and substitu-
tions. For 0 <:<k+1

Pi¢i-1 — pi—1¢; = (—1)°

(ppi + qi,pPi—1 +gi-1) =1

(9g; + piyqqi-1 +pi—1) =1

(ppi +pi + @i, pPi—1 +P—i + qi—1) =1
(99 + 4,991+ gi-1) = ¢+ 1

(ppi + PispPi-1 +pi-1) =p + 1.

(2.3) STABLE REDUCTION PROCESS. Let 7 : C — A* be a flat family
of smooth curves of genus g > 2 degenerating to Cy. To compute the
stable limit of a given family we apply the well known stable reduction
process as follows. One may refer to section 3C of [6] or section 1 of
[2]. If the total surface C is smooth at the singular point of Cp we
blow up C at the singular points of Cy until we have a nodal curve
over t = 0. We still write the resulting family as 7 : C — A. To
remove the multiple components of Cy, we take a finite number of
base changes (of the total order N, the least common multiple of the
multiplicity of components of Cp) followed by the normalization of
the total surface obtained from each base change. Then we have over
t = 0 a reduced curve with at most nodes. Blowing down smooth
rational components of self intersectjon number —1 we get a semistable
curve with the total surface smooth. This is the semistable reduction
theorem. Then contracting smooth rational curves which meet other
components less than three points we get a stable curve over t = 0.
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This is the stable limit of a family 7 : C — A* degenerating to Cp. If
C is not smooth at some points of Cy we first desingularize C and then
do the same process as before.

For 2.4 we introduce some terminologies. Let f : X — Y be a fi-
nite morphism of curves of degree n. We say that f is totally ram-
ified(branched) at P € X(at Q@ € Y, resp.) if f*(Q) = nP. If
Q) = #(PL+ Pz + --- + Pi), we say that f is evenly k-ramified
at @ € Y. We say that f is completely branched at a divisor D of YV if
f is totally branched at all points ) € D with no other branch points.
Similar terminology will be used for a finite morphism of surfaces.

(2.4) LEMMA. Let m:C — A* be a flat family of smooth projective
curves of genus g > 2 degenerating to an irreducible curve Cy with only
one singular point P analytically equivalent to

(a) y? =29

(b) zy? =297,

(c) yP* = z9y;

(d) xyp'i'l — 1-‘1+1y
where 1 < p < qin (a) and 1 < p < ¢ except (a). Suppose that
the total surface C is smooth. Then the stable limit of each family
m:C — A* is as follows if g(Cy) > 0. We use the notations in 2.2 and
write p = p'd, q = ¢'d.

(a) A union of the normalization C of Cy and a smooth curve E
of genus (pq — p — q — d + 2)/2 which meets C at d points lying over
P. If g = p, then E is p to 1 cover of P! totally ramified at p points
that intersect C. If ¢ = pr and r > 1, then E is q to 1 cover of
P! which is totally ramified at p points that intersect C, and evenly
p-ramified at one more branch point. If p = 2 and q = 2r, E is
unique that is isomorphic to the normalization of y> — 1 = 29. In
general E can be visualized as a pq/d-fold cover of P! which is to-
tally ramified at d points that intersect C, and has two more branch
points at which it is evenly q-ramified and evenly p-ramified respec-
tively. The branch points here are uniquely determined algebraically
by the d branches of C at P. Moreover E is isomorphic to the normal-
ization of the plane curve zq(Pl"qk)ym’k 9(y,2) = zP? for odd integers k
and to z”(q'_p’“)yqqu(y, z) = zPY for even integers k, where 9(y,z) is
a homogeneous polynomial of degree d with zeroes exactly at d totally
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branched points coming from d branches of C at P. If (p,q) =1, E is
also isomorphic to the normalization of plane curve y¥ = 29 + 1.

(b) A union of C and a smooth curve E of genus (pg+p — q — d)/2
which meet C at d+1 points lying over P. E isa (pg+p)/d-fold cover of
P! which is totally ramified at d + 1 points that intersect C' and evenly
(g + 1)-ramified at one more branch point (if k = 0, the last branch
point does not appear). Here E is isomorphic to the normalization of
the plane curve (3t ~a)ypPrtarg(y 2) = zP'(4+1) for odd integers
k and to 2P (4tD=retan)yaastarg(y 7) = zP'(a+1) for even integers
k, where g(y, z) is a homogeneous polynomial of degree d with zeroes
exactly at d totally branched points coming from d branches of C
analytically equivalent to y? = z? (also in (c) and (d)) Ifp=2 and
q = 2r, then E is isomorphic to the normalization to y? — 1 = g1

(c) A union of C and a smooth curve E of genus (pg —p+q—d)/2
which meet C at d + 1 points lying over P. E is a (pq + q)/d-fold
cover of P! totally ramified at d + 1 points that intersect C and evenly
(p + 1)-ramified at one more branch point. Here F is isomorphic to
the normalization of the plane curve z? (Pt1)=—(aak+pr)ypPrter g(y 2) =
29 ®+Y) for odd integers k and to zPT1@ —Pr)yaa+Pe g(y 2) = 9 (P+1)
for even integers k.

(d) A union of C and a smooth curve E of genus (pg+p+q—d)/2
where E and C meet at d+2 points lying over P. E can be visualized as
(pg+p+q)/d-fold cover of P! completely ramified at d+2 intersection
points with C. Here E is isomorphic to the normahzatmn of the plane
curve z(P4'+P'+4)=(9qk+Pr-t i) ypPitPE Ak g(y,2) = 2P TP +4 for odd in-
tegers k and to z(pq'+p’+q’)—(ppk+pk+qk)yqqk+pk+qk g(y,z) = gP+P+d

for even integers k.

Note that 2.4 is still valid when generic fibers are stable curves. We
sometimes use affine equations since they are simple even though we
mean projective curves.

Proof. We fix some notations. Let Co = C and P = Py. Let f; : C; —
Ci—1 be the blow-up of C;_; at P;_;, E; the exceptional divisor, C; the
proper transform of C;_; (therefore of C), m; = wo fio foo---of;, Z; =
the central fiber over t = 0 of m; : C; — A, and P; = non-nodal singular
point of Z; if exists. Then m(E;) = mp,_,(Z;—1). Here m(E;) is the
multiplicity of the components F; and mp,_,(Z;—1) is the multiplicity



Singular plane quartics 417

of Z;_, at P,_y. Write (i) =r; +--- +r; in subindex. Then on Clr+1)
which will be explained soon, the central fiber Z(k+1) is a nodal curve.
Remember that 7;, p;, ¢;, s; are defined in 2.2. Let f : C — C(k+1) be the
family obtained after the base change of order m(E(x41)) of C(k+1) and
a normalization. Call Z the central fiber of C and E = F Y Ek+1))-

(a) Since the total surface of the deformation space is smooth, C;
and E are given by yP = gP(m—1+s1 (by 4? = 1if g = p) and ¢ = 0
with m(E;) = p by the abuse of coordinates z and y. If ¢ = p, then
Zy is a nodal curve consisting of E; of multiplicity p and C which
meet at p distinct points. Take a base change of order p to C; — A.
Call C the total surface after a normalization. Then C admits a p to
1 map to C completely branched on C. (For, if some component is
given locally by z! where (I,p) = 1. Then the base change of order p
changes the local equation by z! = ¢? which is locally irreducible. So,
it remains irreducible locally after normalization. Or, see ([6] p. 125)
since we can divide any base change as a composition of base changes
of prime order.) Therefore the inverse image E of E; is p to 1 cover
of Ey completely branched at p points: by Riemann-Hurwitz, g(E) =
(p—1)(p—2)/2. If ¢ = pry and r; > 1, then go to Cp4...4r, in the
below where k = 0 and E,, = 0.

We now assume that k > 1. Then C; and E; are not tangent at P;
unless 71 = 1. We now continuously blow up until we get C,,. On C,,,
only two components E,, and C,, given by z and y? = z°! respectively
pass tangentially at P,,. See Figure 1 with E,,, = 0. Note that only one
more component E, _; meets E, transversely away from FPr,. Note
that

m(E,) =r1p = pp1.
Similarly on C(; for ¢ > 2(see Figure 1), E(), Ei-1) and Cy;) are given
by y, x, y* = z%-1 (or y*-! = z%t) where

M Ery4ry) = r2(m(Er,) + 82) = r2(pr1 + s1) = gr2 = qqu
m(E(z)—1) = (T'i - 1)(m(E(1_1)) + Si_ﬂl) =+ m(E('i—2))
m(Eq)) = r; (m(E(i-1)) + si-1) + m(E(—g))
Claim. For 1 <i<k+1,
m(Eq) = {

pp; for an odd integer ¢

qq; for an even integer .
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The claim holds for ¢ = 1. Assuming that it holds for all integer less
than ¢,

m(E))
=r¢(m(E(,-_1)) + 31_1) + m(E(z-_z))
=ri(pps—1 + Si—1) + qqi—2
=ri(ppi—1 + qgi—1 — PPi-1) + 9%i—2 = g4

if ¢ is an even number. It can be proved similarly for odd numbers 3.

On Cry, Cx) at Py is given by y® —z%-1 = 7::13’“ (y—&lgm™+1) =0
where ¢ is a primitive d-th root of 1. So each branch of C is smooth
at P(k) with intersection number rr; with Ey. To separate these
branches from E(), we need to blow up C(xy 7k+1 times again. Finally
on C(k41), the central fiber Z( ) is a nodal curve in Figure 2.

Now we need base changes to remove the multiple components of
Zk+1)- Note that

M{E(k+1)) = (PPr+1 OF 9qk+1) = pg’' = p'q
q(p’ — qk) for odd k
m(E _1)=7q—m(FEyy) — sk = .
( (k+1) 1) =rq ( (k)) k {p(q' — pi) for even k
B lpp; + pp;—1 for even i
m(E+1) = { lqq; + qqi—1 for odd i
Note if 7 is even and 1 < I < 74y, then E(;)4; lies between E; and
Bty

}f0r1§l§Ti+1,0_<_i§k.

(m(Ey+1), m(Egy+141)) = p = (M(E(it1)), M(E(ira)+1))-

Ifiisodd and 1 <! < 7itq, then E(;) 4 lies between E;. 11 and E11):

(m(E@y+1), m(Egy+i+1)) = ¢ = (M(Eg1)), m(Eit2)+1))-

Let EY and E? ,; be the chain of exceptional curves up to E(xi1)-1
from E; and E, 4 respectively and let Ef and E; ., be the compo-
nents of Ef and E7 |, which meet E(;11) respectively.

Next step is to take a base change of order of the least common
multiple of all components of Z(j 1y to remove the multiple components

of Z(k+1). We always use Riemann-Hurwitz formula to compute g(X)
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of a finite morphism f : X — Y of curves. Remember that X is
rational if f : X — P! is completely branched at two points. We take
base changes of order d, p’ and then ¢’ continuously if d > 1 (if d = 1,
base changes of order p and q automatically). Call the corresponding
normalized surfaces €/, C), C with the central fibers 2/, Z(), Z.
Then the degree d map from ¢(1) — C(k+1) is completely branched only
on C where E$ and E; 1 split into d copies of multiplicity divided by
d: if m(E) = dm, then the local equation of E after a base change of
order d is 9™ — ¢ = Hg_:gd:l(:cm ~ &t). The degree p’ map CM) — ¢!
is totally branched on C and on d copies of Ef ,;, and having p’
copies of multiplicity divided again by p’ over each d copies of EY, but
having the same configuration as in E7,; over each of d copies of E?,
except multiplicity. The reason* for final argument is that if m is any
prime divisor of p and the multiplicity of some component E in each
copy of E;; is a multiple of m, then two components meeting E have
multiplicity prime to m, so these two components are branched and
Riemann-Hurwitz keep the genus of E zero. Put f& : ¢V — Cpy)
the degree p map that is the composition of degree d and degree p’ maps
in the above. Then similarly f® : € — (1 is branched on C and on
p’ copies of E¢, and is divided into ¢’ copies over each of d copies of
E¢, 1. So, the curve E in C is a pg/d-fold cover of E(x1) = P! which
is totally ramified at d points that intersect C, evenly g-ramified over,
say, oo and evenly p-ramified over, say, 0, and no other branch points.
By Riemann-Hurwitz formula, we obtain g(F) = (pg—p—q—d+2)/2.
If one remembers m(E(x11)) = M(Epg41)-1) + m(E(x)) + d and the
g.c.d. of these multiplicities, the normalization of the plane curve given
b
y zm(E(k+1)—l)ym(E(k))(yd _ zd) —_ wm(E(k+1))

is one of such curves if C' meets E(x+1) at the points satisfying y¢=1.
Due to the multiplicity of each components and *, all components ex-
cept C and E keep the genus and intersection points, so are contracted
after appropriate sequence of base changes. Uniqueness of the stable
limit of a given family and the ramification information of E we have
obtained in the proof should give the plane curve model of E.

If ¢ = pr, then E is degree q cover of P! totally branched at p points
and evenly p-ramified at only one more branch point (since Egy = 0),
so it is uniquely determined by the branch points. So, if p = 2 and
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g = 2r, then it is always isomorphic to 29 = y? — 1 by fixing three
branch points 1, —1, and co up to Aut(P!).

If (p,q) = 1, then m(E41)) = pg. So, if we take a base change
of order q (here the inverse (f()~1(E(x11)) of E(x41) keeps the genus
0 since it is branched at 2 points) and then a base change of order p,
E becomes a degree p cyclic cover of P! completely branched at g + 1
points. On the other hand, if we take a base change of order p and
then a base change of order ¢, E is a degree g cover of P! completely
branched at p + 1 points. Then it is isomorphic to y? = z9 + 1. For,
the curve D which has a cyclic g}, completely branched at ¢ 4+ 1 points
is realized as a plane curve

W =flz) =27+ a_129 + -+ a1z + ao

where f(x) has ¢ distinct zeroes , since such curve is uniquely deter-
mined by the branch points and (p,q) = 1. Note that it is smooth
except (0 : 1 : 0). Now for D to have a g,} completely branched at
p + 1 points it should have flex points (zo,yo) of highest order g with
parallel tangent lines (in affine space). So, the Taylor expansion of D
at (o, ¥o) should be y? — 3 = (z — z0)? where 8 = f(z0). Note 8 # 0
since D is smooth except (0 : 1 : 0). Now the projection from (1: 0 : 0)
to the line x = zg gives a g; completely branched at p+1 points. Since
yP — B = (z — z0)? is projectively equivalent to y? = z7 + 1, we are
done.

From the sequence of blow-ups at P, we see that

k
si(s; —1 pg—p—q+d
5(yp=xq)zzrj+l i 12 )= > )
=0

This makes sure from the stable reduction theorem that all compo-
nents over t = 0 in C except E and C should be contracted after an
appropriate sequence of base changes from the formula of genus of sta-
ble curves. The same is true for the remaining cases, so it is enough to
pay attention to the components which meet E(x41).
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E ;)
T Ewu-
Cu
Figure 1

E 41y
Ef,-{-l//%/ e e /\ ‘B,
< Erl+1
"D
//%/ e /\ .
Ele E 'E?
1

Ef = E, E=FE _
. ! (k) k: odd; le (k+1)-1 k: even
Er 41 = Ekes1y—1 Eri+1 = Eg

Figure 2

(b) Again the configuration of E; on C(k+1) is same as in the case

yP = 29 except that the multiplicity of each component is changed and
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that C meets E; at one point. Similarly as in (a), we have

m(E@)) = {q%’ + q; for even 1.
m(E(k_H)) =p'(g+1)

(E ) (g +1)(gr+1 — q) for odd k
m _ =
(k)= p'(q¢+ 1) — (ppx + q) for even k

pp; + g; for odd ¢

l(pps + q;) + ppi—1 + gi—1 for even 1
m(E(i)+l) =

1(qq; + ¢;) + qgi—1 + gi—1 for odd i
for1<l<riy1, 0 <k

Note that for 1 <[ <rjy; —1

(m(EGiy1), m(Eyri1)) = (M(E(+1)), M(E(iv2)41)) = 1 foreveni
(m(Egiy+1), m(Egy1i11)) = (M(E(+1)), m(E(ir2)41)) = g+1 forodds.
In particular, (m(Ek+1)),m(E5)) = 1. We now take base changes
of order g + 1 and then p’ continuously and call the corresponding
normalized surfaces C(), €. Then the degree ¢ + 1 map f) : ¢V —
C(k+1) is totally branched over C and E%, while E7 ., split into ¢ +1
copies of multiplicity divided by g + 1. The degree p’ map f @.C -
C) is totally branched on C, E{ and on the copies of Ef ,,, while
keeping the configuration and genus as in Ef and E? ., as explained in
(a). So, the curve E over E (k1) is a p’(g+1)-fold cover of Ej1) = P!
which is totally ramified at d + 1 points and evenly g+ 1-ramified over
0. By Riemann-Hurwitz formula, we obtain g(E) = (pg+p—g—d)/2.
If one remembers m(E11)) = m(Ek+1)-1) +m(E(x)) +d and g.c.d. of
these multiplicities, one finds that E is isomorphic to the normalization
of the plane curve given by

zm(E(k+1)—1)ym(E(k))(yd — zd) — wm(E(kJrl))

if C meets E(k11) at the points satisfying y* = 1. As in (a) all compo-
nents except C and E® will be contracted after appropriate sequence
of base changes. As EY contracted, we have one more intersection point
between C and E. If (p,q) = 1 here, E becomes a p-fold cover of P!
completely branched at g + 3 points too. We also have

20(zy? = 2z9!) =pg+p—g+d.
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(c) We may assume that k > 1, since y(y? — zP") is analytically
equivalent to yP*t! — z(PT1)7 Again the configuration of Z(k+1) on
C(x+1) is same except the multiplicity and that C meets E,. +1 at one
point. Here

B pp; + p; for odd ¢
m(E) = qq; + p; for even i

q
(E - (p+1)d' — (qqx + pr) for odd &k
TS = (p + 1)(pr+1 — p&) for even k
) = Uppi + pi) + ppi—1 + pi—1 for even i
l(qq; +pi) + qgi—1 + pi—1 for odd ¢
for 1<1<riy1, 0<i<k

Note that (m(Eq41)), m(Es 1 1)) = 1. By exchanging the roles of Ef
and E7 ., as well as p and g, we obtains (c). Here

26(yPt = 2%) =pg—-p+q+d

If (p,q) = 1, then E becomes a g-fold cover of P* completely branched
at p + 3 points too.

(d) The similar argument can be applied here too. But C meets
both E; and E, 4+;. Since

pp; + p; + g; for odd ¢
m(Eq)=9q :
qq; + p; + q; for even i
m(Eg+ny) =pd +9' +4¢
pd' +p' +q — (qqk + px + gx) for odd k
M(E(ky1)-1) = A
pqd +p +q — (ppk + pr + qx) for even k,

all adjacent two components have relatively prime multiplicity. So if
we take a base change of order pq’ + p’ + ¢’, then on C the curve E
over E 1) becomes a (pg' + p’ + ¢')-fold cover of E(r1) completely
branched at d 4 2 points while preserving the configurations and genus
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of two chains EY and E7 ;. Now all components except C' and E will
be contracted after appropriate sequence of base changes so that C and
E meet at d + 2 points. Again E is uniquely determined once d + 2
branch points are fixed. So, it is isomorphic to the normalization of
the plane curve

zm(E(k+1)—1)ym(E(k))g(y’ z) = 2™ (Ek+1))

where g(y, z) is a polynomial of degree d uniquely determined by d
branches of C' at P. Here

20(zyPt =29 y) =pg+p+q+d+2. 0

REMARK. The referee pointed to the author that the tail in (a)
when p = 2 and ¢ = 2r+1 is in fact isomorphic to the normalization of
Y2221 = g2+l 4 22741 He also suggested to prove 2.4 more generally

as appeared here.

A point of a curve which is analytically equivalent to y? = z2" is
called a node, a tacnode, or an oscnode if n = 1, 2, or 3 respectively.
A unibranch singular point of a curve which is analytically equivalent
to y? = 2"t is called a cusp, a ramphoid cusp, or a keratoid cusp if
n =1, 2, or 3 respectively. The point analytically equivalent to 3>
x4 is called an ordinary cusp of multiplicity three. The complement of
C in the stable limit is called as a tail ([6]). From now on we mean by

C the partial normalization of C, i.e.,the normalization except nodes.

(2.5) COROLLARY. Under the same assumption as in 2.4 except
that P is an isolated (possibly reducible, but reduced) plane quartic
singularity, the tail T of the stable limit of C = Cy is as follows.

(a) If P is a cusp, then T is an elliptic curve of j-invariant 0.

(b) IfP is a tacnode then T is an elliptic curve isomorphic to the
normalization of y? = z* + 1 while meeting C at two points. So,
#(T) = 1728.

(c) If P is an ordinary triple point, then T is an elliptic curve of
J(T) = 0 meeting C at three points.

(d) If P is a ramphoid cusp, then T is a genus 2 curve isomorphic
to the normalization of y? = z° + 1.
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(e) If P is a keratoid cusp, then T is a genus 3 curve isomorphic to
the normalization of y?> = z7 + 1.

(f) If P is a oscnode, then T is a genus 2 curve which is isomorphic
to the normalization of y*> = % + 1 while meeting C at two points.

(g) If P is a cusp with a smooth branch, then T is a genus 2 curve
which is isomorphic to the normalization of y* — y® = z® while meeting
C at two points.

(h) If P is an ordinary cusp of multiplicity 3, then T is a genus 3
smooth curve that is isomorphic to y® = z* + 1.

(i) If P is analytically equivalent to z(y? — z*), then T is a genus 2
curve isomorphic to the normalization of y? = z® + 1 while meeting C
at two points.

(j) If P is analytically equivalent to y(y? — z3), then T is a genus
3 smooth curve isomorphic to y* — y3 = z°, which is trigonal totally
ramified at 5 points, so it is isomorphic to a smooth plane quartic.

(k) If P is analytically equivalent to y* — z®, then T is a genus 3
curve isomorphic to the normalization of y? = z® + 1 while meeting C
at two points.

(1) If C is given by zy(z — y)(az — by), then T is a genus 3 curve
isomorphic to the normalization of zy(z — y)(axz — by) = z*, therefore
the stable limit is T'.

Moreover the point(s) of attachment of the tail in each case is (are)
the totally ramified point(s) of some g as explained in 2.4. For exam-
ple, the point of attachment of (d) is a fixed point for the hyperbolic
involution as well as a ramification point for g of y> = z° + 1 up to
automorphisms.

Proof. All are the special cases of 2.4. In (a) and (c) 7(T) = 0 since
they are completely branched trigonal elliptic curves by 2.4(a). In (b),
T is isomorphic to y2 = 2%+ 1, so j(T') = 1728. For, the automorphism
of P! sending three branch points e™%/4, e37¢/4, €57¢/4 t0 0,1, 0o sends
the remaining branch point e77%/4 to —1. O
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(2.6) THE EQUISINGULAR TYPES OF M3 — M3. There are 41
equisingular types in the boundary of M3 and the codimension of each
equisingular types is the number of nodes of its general member. In
Figure 3 we borrow all drawings from [3]. All numbers in Figure 3 are
the genus of the corresponding components.
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3. Reduced singular quartics

Let a family 7 : C — A* of plane quartics be a generic smoothing
of singular plane quartic Cy. We mean by a generic smoothing of Cy a
family obtained by taking small neighborhood of Cy of the intersection
of general 13 hypersurfaces of P4, the projective space parametrizing
all plane quartics. In this section C = Cj is a reduced singular quartic,
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then the total surface C can be chosen generically to be smooth at
the singular points of Cp. We now determine the stable limit of each
reduced singular quartic from its generic smoothing in 3.1 and 3.2.

(3.1) THEOREM. The following is the list of equisingular types
of stable limits of all irreducible singular quartics from their generic
smoothings. For the special types of components of the tail, refer to
2.5.

(Cla) A quartic with one node is itself a stable curve Ala.

(C2a) A quartic with two nodes is itself a stable curve A2a.

(C2b) The stable limit of a quartic with one cusp is a curve Alb.

(C3a) A quartic with three nodes is itself a stable curve A3c.

(C3b) The stable limit of a quartic with a cusp and a node is a curve
A2c.

(C3c) The stable limit of a quartic with a tacnode is a curve A2d.

(C4a) The stable limit of a quartic with a cusp and two nodes is A3b.

(C4b) The stable limit of a quartic with a tacnode and a node is A3c.

(C4c) The stable limit of a quartic with an ordinary triple point is
A3e.

(C4d) The stable limit of a quartic with two cusps is a curve AZ2e.

(C4e) The stable limit of a quartic with a ramphoid cusp is a curve
Alb.

(C5a) The stable limit of a quartic with two cusps and a node is A3g.

(C5b) The stable limit of a quartic with a cusp and a tacnode is a
curve A3h.

(C5¢) The stable limit of a quartic with a ramphoid cusp and a node
is A2b.

(C5d) The stable limit of a quartic with an oscnode is a curve Ala.

(C5e) The stable limit of a quartic with a cusp with a smooth branch
is Ala.

(C6a) The stable limit of a quartic with three cusps is a curve A3i.

(C6b) The stable limit of a quartic with a cusp and a ramphoid cusp
is Alb.

(C6c) The stable limit of a quartic with a keratoid cusp is a smooth
curve of genus three.

(C6d) The stable limit of a quartic with an ordinary cusp of multi-
plicity three is a smooth curve of genus three.
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Proof. From the genus formula of an irreducible plane curve, a quar-
tic has at most three singular points. By fixing three points in P? one
can figure out equations of quartics listed above from which one can
find out the codimensions too. We now show that the above is a com-
plete list of all irreducible plane quartics. From the genus formula,
§(P) < 3. Note that §(P) =1 if and only if P is a node or a cusp. If
§(P) = 2, then P is a double point and a point P’ over P must have
5(P') = 1. So P’ is either a node or a cusp which implies P is either a
tacnode or a ramphoid cusp. If §(P) = 3 and P is a double point of C,
then 6(P’) = 2 where P’ is a point over P. So, P is an oscnode or a
keratoid cusp. If §(P) = 3 and P is a triple point of C, then we should
have §(P') = 0 for any point P’ over P. So, they are smooth. From
what we have done, we cannot have tangential branches. Therefore P
is an ordinary triple point (if it has three local branches), an ordinary
cusp with a smooth branch (if it has two local branch) or an ordinary
cusp of multiplicity three (if it is unibranch). Since " pc6(P) < 3, a
little combinatorics shows that the above list is complete.

Since the total surface of our family is smooth, we apply 2.5 to
each singular point of C. By contracting the partial normalization
C if it is smooth, rational, and meets the other components at less
than three points, we get the corresponding stable curve. By a partial
normalization we mean the desingularization of C except nodes of C.[]

(3.2) THEOREM. The following is the list of all reducible and re-
duced singular quartics and singular types of their corresponding stable
limits from generic smoothings. For the special types of the compo-
nents of the tail, see 2.5.

(C3d) A quartic of a cubic and a line is itself in AJe.

(C4f) A cubic plus a tangent line becomes a curve in A2d.

(C4g) A nodal cubic plus a line is itself a curve in A4b.

(C4h) A quartic of two conics is a stable curve in Adc.

(C5f) A cubic plus a flex line becomes a curve in Alb.

(C5g) A nodal cubic plus a tangent line becomes a curve in A3c.

(C5h) A nodal cubic plus a line through a node becomes a curve in
A3e.

(C5i) A cuspidal cubic plus a line becomes a curve in A4f.

(C5j) Two conics meeting tangentially at one point become a curve
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in Adi.

(C5k) A conic plus two lines is a stable curve in Ad.

(C6e) A nodal cubic plus a flex line becomes a curve in A2b.

(C6f) A nodal cubic plus a tangent line at a node becomes a curve in
Ala.

(C6g) A cuspidal cubic plus a tangent line becomes a curve in A3h.

(C6h) A cuspidal cubic plus a line through a cusp becomes a curve in
Ala.

(C6i) Two conics meeting tangentially at two points become a curve
in A2d.

(C6j) A conic, a line plus a tangent line to a conic becomes a curve
in Adi.

(C6k) A conic plus two lines which intersect on a conic becomes a
curve in A3e.

(C6l) Four distinct lines become a stable curve of A6be.

(C7a) A cuspidal cubic plus a flex line becomes a curve in Alb.

(C7b) A cuspidal cubic plus the tangent line at a cusp becomes a
smooth curve of genus three.

(C7¢) Two conics with an intersection multiplicity 3 at one point be-
come a curve in Ala.

(C7d) A conic plus two tangent lines becomes a curve in A2d.

(CTe) A conic, a line plus a tangent line through an intersection point
of former two components becomes a curve in Ala.

(CTf) A line plus three concurrent lines becomes a curve in Ade.

(C8a) Two conics meeting only one point become a smooth curve.

(C8b) Four concurrent lines become smooth quartics.

In 3.1 and 3.2, the numbering is chosen to emphasize the codimen-
sion of each equisingular stratum in P!4. For example, C7 means the
codimension seven in P!4. In 3.2, all components meet transversely
unless specified.

Proof. We first show that the above is a full list. Note that a singular
irreducible cubic has one node or one cusp and that any cubic has a
flex. By Bezout, the intersection number of a line and a cubic is three.
These intersection points could be smooth or singular points of a cubic,
and they meet transversely, tangentially, or meet at the flex point of a
cubic. By Bezout’s theorem and a little combinatorics will give the full




Singular plane quartics 431

list above. Remember that the total surface of a generic smoothing
of C is smooth. So we apply 2.5 to each singular point of C' and
contract, if necessary, some smooth rational components of the partial
normalization of C to get the stable limit. Here one has to be careful in
chasing the different components of C. The singularities correspond as
follows: C5f, C6e, C7a, C7c-oscnode; C6h-2.5(g); C6f and C7e-2.5(i);
C7b-2.5(j); C8a-2.5(k); C8b-2.5(1). Others are easy to tell. Now all
follow by applying 2.5. 1

4. Non-reduced singular quartics

In this section we assume that C is a singular quartic with multiple
components. Let f(z,y,2z) and
F(z,y,2,t) = f(z,9,2) + tg1(2,9, 2) + t2g2(x, ¥, 2) + t3ga(z, 9, 2) + - -
be equations of C' and C, where w : C — A is a generic smoothing of
C = Cy. Suppose that f = h"k,n = 2,3 or 4, and h, k with no multiple
components. Then

OF =19k 1% i "2—1; BT LT LN

oz oz Oz Oy Oy
OF ., _10h n Ok oF _
—é;—nh 6zk+h 8z+t[ ]8t =gy +t[---].

There are no common zeroes of the first three equations since C; is a
nonsingular quartic for ¢ # 0. When ¢t = 0, the above four equations
are always zero at the common zeroes of h and g;. Let S be the set of
the isolated singular points of C' and the intersection points of h and
k. Since generic homogeneous polynomials miss the finite set S and
meet the component of C defined by A transversely, we have

(4.1) ProproSITION. If C is a non-reduced plane quartic and  :
C — A is an one dimensional generic smoothing of C, then C has
4deg(h) isolated singular points of types z™ = yt for suitable coordi-
nates on the multiple component of C of multiplicity n.

(4.2) LEMMA. Let X be a surface given by z™ = yt in C3. Then
the singular point (0,0,0) of X can be resolved by (%] times of blow-
ups. In the nonsingular model, the divisor t = 0 defines a nodal curve
consisting of the proper transform of the original curve t = 0 plus
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n — 1 exceptional curves with multiplicity n, n—1, n—2, ---and 1
respectively.

Proof. The singular point is type A,_1. So, it is well known. For
the multiplicity of each component of the divisor ¢t = 0, examine the
divisor (¢t = 0) at each step of blow-up (for example, see [4]). O

(4.3) THEOREM. The following is the list of the stable limits of
non-reduced plane quartics from their generic smoothings.

(1) Every hyperelliptic smooth curve of genus 3 is the stable limit
of a double conic.

(2) Every hyperelliptic genus 2 curve with one node is the stable
limit of a conic plus a double line.

(3) A union of any two elliptic curves meeting at two points is the
stable limit of two double lines.

(4) A union of two elliptic curves meeting at two points is the stable
limit of conic plus a tangential double line where j-invariant of
one elliptic component is 0.

(5) Every hyperelliptic genus 2 curve with one node is the stable
limit of two lines plus a double line.

(6) A union of two elliptic curves meeting at two points is the
stable limit of three concurrent lines one of which is a double
line where j-invariant of one elliptic component is 1728.

(7) Every trigonal curve of genus 3 that is completely branched at
5 points is the stable limit of a triple line plus a line. Such
trigonal curve of genus 3 is isomorphic to the plane quartic
y3 =z(z - 1)(z — a)(z — B) for some a, B # 0, 1.

(8) Every 4-gonal curve of genus 3 that is completely branched at
4 points is the stable limit of a quadruple line. Such a 4-gonal
curve of genus 3 is isomorphic to the plane quartic z(z —1)(z —
a) = y* for some o # 0, 1.

Proof. Since all singularities of C are of type A, we obtain as in
(4.2) the smoothing p : C — A of p: C — A and new central fiber
=1
p7(0).

(1) Since C has eight singular points of type u? = tv on double
conic, p~1(0) is a rational double curve with eight rational tails. A
base change of order two and normalizations (and contractions of eight
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tails) replace the central fiber with a smooth hyperelliptic curve of
genus three. In this way we obtain all hyperelliptic curves of genus
3 depending on the eight singular points of C, so on the choice of
generic smoothing. Fixing three branch points up to P!, the remaining
5 branch points determine the curve. In the remaining proof we do not
mention this kind of argument since it is clear from the description.

(2) Here C has four singular points of type Ay on the double line
of C. So, 571(0) is a union of C and four rational tails on a double
line L. Note that the conic component of C meets L at two points. A
base change of order two followed by a normalization replaces L with
a genus 2 curve. After contractions of rational components including
conic part we obtain an irreducible curve with one node.

(3) Here C has 8 singular points of type u? = tv each four of which
are on each double line. Then 5~1(0) is a union of two rational double
curves Li, Ly which meet at one point with 8 exceptional curves in
the place of 8 singular points of C. Now we take a base change of
order two. Let C’ be the surface we get after the base change and
normalization. Then there is a 2 to 1 map from C’ to C branched
along the eight exceptional curves. The curve L} over L; is a double
cover over L; branched at four points for i = 1,2 : Riemann-Hurwitz
says that g(L;) = 1. Since the intersection point of L; and Lj is not
branched, there are two points over it. Thus L] and L) meet at two
points. Since eight rational tails has self-intersection number —1, all
are contracted.

(4) Call Q a conic and L a line part of C. Here C has four singular
points of type u? = tv on a double line. Therefore the fiber over
t=00of p:C — A consists of C and four exceptional curves E; on 4
singular points of C. We now blow up the total surface two times at
the intersection point P of L and Q until the divisor ¢ = 0 becomes a
nodal curve. It consists of 6-tuple exceptional curve which meets each
of three rational curves of multiplicity 3, 2 and 1 respectively at one
point, where the multiplicity 2 component L has 4 rational tails F;. If
we take a base change of order 3 followed by a normalization, we obtain
a curve over ¢ = 0 of two rational double curves meeting at one point
each of which has 4 rational tails which is $71(0) in (3). If one takes a
base change of order 2 first, one can show that one elliptic curve has j
invariant 0.
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(5) Since C has four singular points on a double line of type u? = tv,
we obtain four more rational curves passing through these four singular
points as well as components of C. After a base change of order two,
a normalization (then the double components is replaced as 2 to 1
cover of P! branched at 6 points) and contractions of rational curves
of negative self intersections, we get an irreducible curve of genus two
with one node.

(6) Call two simple lines Ly, Ly and a double line D. Again C has
four singular points on a double line of type u? = tv. So, we obtain
four exceptional curves passing through these four singular points be-
sides C over t = 0. Blow up C at the intersection point P of three
components of C. Then on the quadruple exceptional curve E three
components of C are separated. If we take a base change of order 2
and a normalization, we have 2 to 1 map to C completely branched
on Lq, Ly and 4 simple exceptional curves. The curve D’ over D is
a degree two cover over D branched at four points: g(D’) = 1. The
curve E’ over E is a double cover branched at two points: g(E’) = 0.
And D’ and E’ meet at two points since the intersection points of D
and F is not a branched point. One more base change of order two
followed by a normalization will replace E’ with an elliptic curve E".
Usual contractions gives two elliptic curves meeting two points. Here
E" admits g} totally ramified at 2 points and 2-evenly ramified at the
remaining branch point, which is studied in 2.5(b). So, j(E") = 1728.
The other elliptic component can have any j-invariant depending on
the choice of a smoothing.

(7) If C is a triple line M and a line L, we have four singular points
of C on a triple line of type 3 = tv. On C we have four chains of
exceptional curves as explained in 4.2 as well as L passing through
M at one point. A usual base change of order three replaces M by a
triple cover over a rational curve completely branched at 5 points: by
Riemann-Hurwitz ¢ = 3. Now standard semistable reduction process
gives a smooth curve of genus three as a stable limit. By fixing three
branch points at 0, 1, co, we obtain the equation.

(8) Here the singularities are of type A4. So, the central fiber of
C is quadruple line plus 4 chains of exceptional curves as in 2.5. A
base change of order 4 replace quadruple cover over a rational curve
completely branched at 4 points:by Riemann-Hurwitz ¢ = 3. Again,
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standard semistable reduction process gives a smooth curve of genus
three as a stable limit. By fixing three branch points at 0, 1, co, we
obtain the equation. a

The stable limit of a reduced plane quartic from a generic smoothing
only depends on C, in particular the local equation at P. On the other
hand, the stable limit of a non-reduced plane quartic depends on the
choice of the equation of generic smoothing as well as C. Brendan Has-
sett gives the author an example of a plane quartic which has smooth
limit from very special smoothing even if it does not admit smooth
stable limit from the generic smoothings.

From what we have done, one can see

(4.4) CorOLLARY ([10]). Only eight equisingular types of plane

quartics have smooth stable limits from the pencil of their generic
smoothings. They are C6c, C6d, C7b, C8a, C8b, and the cases 1,7,8
in 4.3, none of which are general members of Ms.

References

(1] M. Artin and G. Winters, Degenerate fibers and stable reduction of curves,
Topology 10 (1971), 373-383.

(2] F. Bardelli, Lectures on stable curves, Lectures on Riemann Surfaces, World
Scientific, 1989, pp. 648-704.

[3] C. Faber, Chow rings of moduli spaces of curves I: The Chow ring of Ma,
Ann. Math 132 (1990), 331-419.

[4] P. Griffith and J. Harris, Principles of algebraic geometry, Willey-Interscience,
1978.

[5] J. Harris, Curves and their moduli, Proc. Sympos. Pure Math. 46, AMS, 1987,
pp- 99-143.

[6] J. Harris and I. Morrison, Moduli of curves, Springer, 1998.

[7] B. Hassett, Local stable reduction of plane curve singularities, to appear in J.
Reine und Angew. Math.

, Stable log surfaces and limits of quartic plane curves, to appear in
Manuscripta Math.

[9] S. litaka, Algebraic Geometry, Springer-Verlag, 1982.

[10] P. Kang, Stable reductions of singular plane quartics, Comm. Korean Math.
Soc. 9 (1994), 905-915.

{11] G. Kempf, D. Mumford and B. Saint Donat, Toroidal embeddings, vol. 339,
LNM, Springer-Verlag, 1973.




436 Pyung-Lyun Kang

[12] C. Zaal, Explicit complete curves in the moduli space of curves of genus three,
Geometriae Dedicata 56 (1995), 185-196.

Department of Mathematics
Chungnam National University
Taejon 305-764, Korea

E-mail: plkang@math.chungnam.ac.kr



