DOI QR코드

DOI QR Code

Analysis of the Singular Point of Cyclic Voltammograms Recorded with Various Scan Rates

  • Received : 2017.06.16
  • Accepted : 2017.08.17
  • Published : 2017.09.30

Abstract

This paper presents the results of an investigation into the isoamperic point of cyclic voltammograms, which is defined as the singular point where the voltammograms of various scan rates converge. The origin of the unique point is first considered from a theoretical perspective by formulating the voltammetric curves as a system of linear equations, the solution of which indicates that a trivial solution is only available at the potential at which the net current is zero during the reverse potential scan. In addition, by way of a mathematical formulation, it was also shown that the isoamperic point is dependent on the switching potential of the potential scanning. To validate these findings, theoretical and practical cyclic voltammmograms were studied using finite-element based digital simulations and 3-electrode cell experiments. The new understanding of the nature of the isoamperic point provides an opportunity to measure the charge transfer effects without the influence of the mass transfer effects when determining the thermodynamic and kinetic characteristics of a faradaic system.

Keywords

References

  1. John W. Moore, Ralph G. Pearson, Kinetics and Mechanism, 3rd Ed., Wiley, 1981, 48-51.
  2. M. Greger, M. Kollar and D. Vollhardt, Physical Review B, 2013, 87(19), 195140. https://doi.org/10.1103/PhysRevB.87.195140
  3. H.J. Cleaves, Isoelectric Point In Encyclopedia of Astrobiology, Springer Berlin Heidelberg, (2011) 858-859.
  4. B. Bjellqvist, G.J. Hughes, C. Pasquali, N. Paquet, F. Ravier, J.-C. Sanchez, S. Frutiger and D. Hochstrasser, ELECTROPHORESIS, 1993, 14(1), 1023-1031. https://doi.org/10.1002/elps.11501401163
  5. M. Son, D. Kim, J. Kang, J.H. Lim, S.H. Lee, H.J. Ko, S. Hong and T.H. Park, Analytical Chemistry, 2016, 88(23), 11283-11287. https://doi.org/10.1021/acs.analchem.6b03284
  6. D. Midgley, Analyst, 1987, 112(5), 573-579. https://doi.org/10.1039/an9871200573
  7. S. Bhadra, D.S.Y. Tan, D.J. Thomson, M.S. Freund and G.E. Bridges, IEEE Sensors Journal., 2013, 13(6), 2428-2436. https://doi.org/10.1109/JSEN.2013.2255519
  8. D. Midgley, Analyst, 1987, 112(5), 581-585. https://doi.org/10.1039/an9871200581
  9. S. Hong, H. Jo and S.-W. Song, J. Electrochem. Sci. Technol., 2015, 6, 116-120. https://doi.org/10.5229/JECST.2015.6.4.116
  10. S.O.R. Siadat, J. Electrochem. Sci. Technol, 2015, 6(4), 111-115. https://doi.org/10.5229/JECST.2015.6.4.111
  11. I. Kang, W.-S. Shin, S. Manivannan, Y. Seo and K. Kim, J. Electrochem. Sci. Technol, 2016, 7, 277-285. https://doi.org/10.5229/JECST.2016.7.4.277
  12. A.F.T. Auguste, G.C. Quand-Meme, K. Ollo, B. Mohamed, S.S. placide, S. Ibrahima and O. Lassine, J. Electrochem. Sci. Technol., 2016, 7(1), 82-89. https://doi.org/10.5229/JECST.2016.7.1.82
  13. B.-Y. Chang, J. Electrochem. Sci. Technol., 2016, 6, 146-151.
  14. S.-H. Oh and B.-Y. Chang, J. Electrochem. Sci. Technol., 2016, 7, 293-297. https://doi.org/10.5229/JECST.2016.7.4.293
  15. R.S. Nicholson and I. Shain, Analytical Chemistry, 1964, 36(4), 706-723. https://doi.org/10.1021/ac60210a007
  16. S.-H. Kang, S.-Y. Lee, J.-H. Kim, C.-J. Choi, H. Kim and K.-S. Ahn, J. Electrochem. Sci. Technol., 2016, 7, 52-57. https://doi.org/10.5229/JECST.2016.7.1.52
  17. M. Aliaghayee, H.G. Fard and A. Zandi, J. Electrochem. Sci. Technol., 2016, 7, 218-227. https://doi.org/10.5229/JECST.2016.7.3.218
  18. E.K. Park and J.W. Yun, J. Electrochem. Sci. Technol., 2016, 7, 33-40. https://doi.org/10.5229/JECST.2016.7.1.33