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ON THE SINGULAR LOCUS OF FOLIATIONS OVER P2

Shi Xu

Abstract. For a foliation F of degree r over P2, we can regard it as

a maximal invertible sheaf N∨
F of ΩP2 , which is represented by a section

s ∈ H0(ΩP2 (r+2)). The singular locus SingF of F is the zero dimensional
subscheme Z(s) of P2 defined by s. Campillo and Olivares have given

some characterizations of the singular locus by using some cohomology

groups. In this paper, we will give some different characterizations. For
example, the singular locus of a foliation over P2 can be characterized as

the residual subscheme of r collinear points in a complete intersection of

two curves of degree r + 1.

1. Introduction

The main purpose of this paper is to try to answer the following question:
Given a zero dimensional subscheme ∆ of P2, when is it the singular locus of
a foliation over P2? The following are the main theorems.

Theorem 1.1. Suppose ∆ is a zero dimensional subscheme of P2, and r is a
non-negative integer. Then the following conditions are equivalent.

(1) ∆ is the singular locus of a foliation F in P2 of degree r.
(2) ∆ is the residual subscheme of r collinear points in a complete inter-

section of two curves F1 and F2 of degree r + 1. We write it as

∆ = F1F2 − { r collinear points }.
Equivalently,

∆ = F1F2 − F1F2H,

where deg∆ = r2 + r + 1, degF1 = degF2 = r + 1, degH = 1.

Note that the implication (1) =⇒ (2) is in ([4], Section 1, p.98). The proof of
Theorem 1.1 is given in Theorem 3.3. By Theorem 1.1, ∆ is the singular locus
of a foliation F of degree r = 0, if and only if ∆ is a point. ∆ is the singular
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locus of a foliation F of degree r = 1, if and only if ∆ is a non-collinear zero-
dimensional subscheme of degree 3. (See [4], Theorem 4.1 or Corollary 3.5.)
We will discuss only the case that degF = r ≥ 2.

Suppose ∆ is a zero dimensional subscheme of P2 of degree deg∆ = r2 +
r + 1 > 3, and consider the following conditions:

(a1) h1(I∆(2r − 2)) = 1 and h1(I∆′(2r − 2)) = 0 for any ∆′ ⊂ ∆ of degree
r2 + r.

(a2) h1(I∆′(2r − 2)) = 0 for any ∆′ ⊂ ∆ of degree r2 + r.
(a3) h0(I∆′(r)) = 0 for any ∆′ ⊂ ∆ of degree r2 + r.
(b1) h0(I∆(r+1)) ≥ 2, and the linear system P

(
H0(I∆(r+1))

)
has no base

curve.
(b2) h0(I∆(r+1)) ≥ 3, and the linear system P

(
H0(I∆(r+1))

)
has no base

curve.
(b3) h0(I∆(r + 1)) ≥ 3, and h0(I∆(r)) = 0.

In fact, the condition (a1) means that, ∆ is the zero subscheme given by
a global section of a rank 2 locally free sheaf E with c1(E) ≡ (2r + 1)H and
c2(E) = ∆ (see Remark 3.7). Then we have the following theorem.

Theorem 1.2. Suppose ∆ is a zero dimensional subscheme of P2 with deg∆ =
r2 + r + 1 > 3. Then the following conditions are equivalent:

(1) ∆ is the singular locus of a foliation F in P2 of degree r.
(2) ∆ satisfies the conditions (a1) and (b1).
(3) ∆ satisfies the conditions (a2) and (b2).
(4) ∆ satisfies the conditions (a3) and (b2).
(5) ∆ satisfies the conditions (a1) and (b3).

Note that the equivalence of (1) and (4) is a theorem of Campillo-Olivares
([4], Theorem 4.5). The proofs of Theorem 1.2 are given in Theorems 3.6, 3.8,
3.9, 3.14, respectively.

2. Notation and preliminaries

2.1. Foliations over P2

Let P2 = ProjC[X,Y, Z] be the projective plane over C and let OP2 , TP2 ,ΩP2

denote its structure, tangent and cotangent sheaves. A foliation F over P2 is
given by a short exact sequence

(1) 0 −→ TF −→ TP2 −→ I∆ ·NF −→ 0,

or

(2) 0 −→ N∨
F −→ ΩP2 −→ I∆ ·KF −→ 0,

where TF (resp. N∨
F ) is a maximal sub-invertible sheaf of TP2 (resp. ΩP2).

We call KF = T∨
F (resp. N∨

F , ∆) the canonical sheaf (resp. conormal sheaf,
singular locus) of F . It is clear that ∆ is a local complete intersection. (See [3]
for more details.)
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Recall the famous Bott’s formula (see [2] or [8], p.4).

Lemma 2.1 (Bott).

hp(P2,OP2(k)) =


1
2 (k + 2)(k + 1), if p = 0 and k ≥ 0,
1
2 (k + 2)(k + 1), if p = 2 and k ≤ −3,

0, others.

hp(P2,ΩP2(k)) =


k2 − 1, if p = 0 and k ≥ 2,

1, if p = 1 and k = 0,

k2 − 1, if p = 2 and k ≤ −2,

0, others.

Let L = OP2(−r − 2) be a maximal sub-invertible sheaf of ΩP2 . By Bott’s
formula, we see that r ≥ 0. Such L defines a foliation F with N∨

F = L. We
call r the degree of F . Consider the natural projection

π : C3 − {0} −→ P2,

via (X,Y, Z) 7→ [X,Y, Z].

Proposition 2.2 ([4], p.99). F corresponds to a global section ω of ΩC3−{0} :

ω = AdX +BdY + CdZ,

where A,B,C ∈ C[X,Y, Z] are homogeneous polynomial of degree r + 1 with
no common factors, and the so-called Euler’s condition

(3) X ·A+ Y ·B + Z · C = 0

holds.

By ([4], Remark 3.4), we see that

gcd(B,C) = 1 orX, gcd(A,C) = 1 orY, gcd(A,B) = 1 orZ.

To characterize the singular locus ∆ = SingF , we recall the definition of the
residual subscheme (see [5]).

Definition. Let Γ be a zero dimensional scheme with coordinate ring A(Γ).
Let Γ′ ⊂ Γ be a closed subscheme and IΓ′ ⊂ A(Γ) its ideal. By the subscheme
Γ′′ of Γ residual to Γ′ we shall mean the subscheme of Γ defined by the ideal
IΓ′′ = Ann(IΓ′/IΓ).

Lemma 2.3 ([5]). Let Γ,Γ′,Γ′′ be as above. If Γ is a local complete intersec-
tion, then we have IΓ′ = Ann(IΓ′′/IΓ) and deg Γ = deg Γ′ + deg Γ′′. In this
case, we always write Γ′′ = Γ− Γ′.

For hypersurfaces Fj (j = 1, . . . , n) of P2, we denote by F1F2 · · ·Fn the
subscheme F1∩F2∩ · · ·∩Fn of P2. We have the following proposition (see also
[4], p.98).



1070 S. XU

Proposition 2.4. Suppose ∆ is the singular locus of a foliation F in P2 of
degree r. Then we can write ∆ as

∆ = F1F2 − F1F2H,

where F1, F2, H are curves of degree r + 1, r + 1, 1 in P2 and F1, F2 have no
common components. In particular, deg∆ = r2 + r + 1.

Proof. By choosing a suitable coordinate, we assume ∆ ∩ (X = 0) = ∅. Then
B,C have no common factors. Otherwise, it follows from the equation (3) and
the fact I∆ = ⟨A,B,C⟩ that we can write B,C as B = −XB′ and C = −XC ′,
where B′, C ′ have no common factors. This induces A = Y B′ + ZC ′. So
∆ ∩ (X = 0) = (A = 0) ∩ (X = 0) ̸= ∅, which is a contradiction. So we can
choose F1 = Z(B), F2 = Z(C) and H = Z(X). Then we see that

∆ = F1F2 − F1F2H,

which is equivalent to the following claim.

Claim: For any point p ∈ F1F2H, (IF1F2)p = (IF1F2H)p, which implies
IF1F2 |H = IF1F2H .

It suffices to consider the case p ∈ (Z ̸= 0) := U , say p = [0, a, 1]. Then we
have

IF1F2 |U = ⟨B(x, y, 1), C(x, y, 1)⟩, IF1F2H |U = ⟨B(x, y, 1), C(x, y, 1), x⟩.

It is clear that

xA(x, y, 1) = −yB(x, y, 1)− C(x, y, 1) ∈ IF1F2 |U .

Since p ∈ Z(B,C) but p ̸∈ ∆, we have A(p) ̸= 0. So x ∈ (IF1F2
)p. This implies

(IF1F2
)p = (IF1F2H)p clearly.

By the equation ∆ = F1F2 − F1F2H, the degree of ∆ can be computed as
follows. We can write B,C as

B(X,Y, Z) = XB1(X,Y, Z) +B2(Y, Z)

C(X,Y, Z) = XC1(X,Y, Z) + C2(Y,Z),

where B2 ̸= 0 or C2 ̸= 0. By the relation equation XA + Y B + ZC = 0, we
have

X(A+ Y B1 + ZC1) + Y B2 + ZC2 = 0,

which implies Y B2 + ZC2 = 0. So we have

B2(Y, Z) = Z ·G(Y,Z), C2(Y,Z) = −Y ·G(Y, Z)

for some nonzero homogeneous polynomial G(Y,Z) of degree r. Then we see

IF1F2H = ⟨X,B2(Y,Z), C2(Y,Z)⟩ = ⟨X,G(Y,Z)⟩,

which implies deg(F1F2H) = degH G = r. Hence,

deg∆ = deg(F1F2)− deg(F1F2H) = (r + 1)2 − r = r2 + r + 1. □
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2.2. The Cayley-Bacharach property

For the proof of the main theorem, we will use some results about the Cayley-
Bacharach property. So we recall the following theorem ([9], Theorem 1).

Theorem 2.5 ([9]). Let E be a locally free sheaf on a complex projective surface
X of rank 2, and s be a section of E whose zero subscheme ∆ = Z(s) is of
dimension 0. Let ∆′′ ⊂ ∆′ be two subschemes of ∆ and let L be a divisor.
Then there exists a complex of vector spaces

0 −→ H0(I∆−∆′′(det E − L))
α−→ H0(I∆−∆′(det E − L))

µ−→

H1(I∆′(KX + L))
β−→ H1(I∆′′(KX + L)) −→ 0,

exact except at H1(I∆′(KX + L)). In particular, if

H1(X, E∨(det E − L)) = H1(X, E(−L)) = 0,

then the complex is exact everywhere.

Remark 2.6. (1) Let E = OX(F1)⊕OX(F2) where F1, F2 are effective divisors
over X and dim(F1 ∩ F2) = 0, and let s ∈ H0(E) with ∆ = Z(s) = F1F2.

If H1(OX(Fi − L)) = 0 for all i = 1, 2, for example, X = P2, then we have
the following exact sequence

0 −→ H0(I∆−∆′′(F1 + F2 − L))
α−→ H0(I∆−∆′(F1 + F2 − L))

µ−→

H1(I∆′(KX + L))
β−→ H1(I∆′′(KX + L)) −→ 0.

Moreover, if we have H1(KX + L) = 0, then

h0(I∆−∆′(F1 + F2 − L))− h0(I∆(F1 + F2 − L)) = h1(I∆′(KX + L)).

(2) Let X = P2, E = ΩP2(r + 2) and L ≡ sH (s ̸= r + 2). In this case, ∆ is
the singular locus of a foliation of degree r in P2. So

det E − L ≡ (2r + 1− s)H, KX + L ≡ (s− 3)H,

and
H1(E(−L)) = H1(ΩP2(r + 2− s)) = 0

for all s ̸= r + 2 . Then for all s ̸= r + 2, we have the following exact sequence

0 −→ H0(I∆−∆′′(2r + 1− s))
α−→ H0(I∆−∆′(2r + 1− s))

µ−→

H1(I∆′(s− 3))
β−→ H1(I∆′′(s− 3)) −→ 0.

Corollary 2.7 (Cayley-Bacharach). Let F1, F2 be curves in P2 of degree d1, d2,
and suppose that the intersection subscheme ∆ = F1 ∩ F2 is zero-dimensional.
Let ∆′′ ⊂ ∆′ be subschemes of ∆ and set e = d1 + d2 − 3. For all s, we have

h0(P2, I∆−∆′(s))−h0(P2, I∆−∆′′(s)) = h1(P2, I∆′(e− s))−h1(P2, I∆′′(e− s)).

In particular,

h0(P2, I∆−∆′(s))− h0(P2, I∆(s)) = h1(P2, I∆′(e− s)).
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Corollary 2.8. Suppose ∆ is the singular locus of a foliation of degree r in
P2. Let ∆′′ ⊂ ∆′ be subschemes of ∆. For all s ̸= r − 1, we have

h0(P2, I∆−∆′(s))− h0(P2, I∆−∆′′(s))

= h1(P2, I∆′(2r − 2− s))− h1(P2, I∆′′(2r − 2− s)).

In particular, for any r ̸= 1 and ∆′ ⊊ ∆, we have

h1(P2, I∆(2r − 2))− h1(P2, I∆′(2r − 2)) = 1.

2.3. Some results of cohomology groups about ∆ = SingF

We have the following proposition (see also [4], Theorem 3.2).

Proposition 2.9. Let F be a foliation of degree r ≥ 0 on P2, and let I∆ be
the sheaf of ideals of its singular subscheme ∆ = SingF .

(i) If r = 0, then for any integer s ≥ 1, we have ∆ = p for some point
p ∈ P2 and

h0(P2, I∆(s)) = h0(P2,O(s))− 1 =
1

2
(s+ 1)(s+ 2)− 1.

(ii) If r ≥ 1, then for any integer s ≥ 0, we have

h0(P2, I∆(s)) =


0, if s ≤ r,

(s− r)(s− r + 2), if r + 1 ≤ s ≤ 2r,
1
2 (s+ 1)(s+ 2)− (r2 + r + 1), if s > 2r.

In particular,

h0(P2, I∆(r + 1)) =

{
2, if r = 0,

3, if r ≥ 1.

Proof. The part (i) is clear and next we will prove the part (ii). Consider the
following exact sequence from the sequence (2):

0 −→ OP2 −→ ΩP2(r + 2) −→ I∆(2r + 1) −→ 0,

and we have

0 −→ H0(O(s− 2r − 1)) −→ H0(ΩP2(s− r + 1)) −→ H0(I∆(s)) −→ 0.

So

h0(P2, I∆(s)) = h0(ΩP2(s+ r − 1))− h0(O(s− 2r − 1))

=


0, if s ≤ r,

(s− r)(s− r + 2), if r + 1 ≤ s ≤ 2r,
1
2 (s+ 1)(s+ 2)− (r2 + r + 1), if s > 2r.

Here what we need is just the Bott’s formula (Lemma 2.1). □

Proposition 2.10. Let ∆ be the singular locus of a foliation of degree r (̸= 1)
in P2. Then
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(i) h1(I∆(2r − 2)) = 1,
(ii) h1(I∆′(2r − 2)) = 0 for any ∆′ ⊊ ∆.

Proof. From the natural exact sequence

0 −→ I∆(2r − 2) −→ OP2(2r − 2) −→ O∆ −→ 0,

we have

h1(I∆(2r − 2)) = deg∆− h0(O(2r − 2)) + h0(I∆(2r − 2)) = 1.

Then by Corollary 2.8, for any r ̸= 1 and any ∆′ ⊂ ∆ with deg∆′ = deg∆−1,
we have

h1(I∆′(2r − 2)) = h1(I∆(2r − 2))− 1 = 0. □

Remark 2.11. If r = 1, then deg∆ = 3. It is clear that

h0(I∆′(2r − 2)) = h0(I∆′) = deg∆′ − 1,

for any ∆′ ⊂ ∆ with deg∆′ ≥ 1.

3. Proof of main theorems

3.1. Proof of the Theorem 1.1

Lemma 3.1. Let F1 = Z(B), F2 = Z(C) be curves of degree r + 1 (≥ 1)
over P2 = ProjC[X,Y, Z], with no common component. Let H = Z(X) be a
hyperplane over P2. If deg(F1F2H) = r, then we can write B,C as

B(X,Y, Z) = X ·B1(X,Y, Z) + a · ZG(Y,Z),

C(X,Y, Z) = X · C1(X,Y, Z) + b · Y G(Y,Z),

after a coordinate transformation over Y, Z, where a, b ̸= 0.

Proof. Firstly we can write B,C as

B(X,Y, Z) = X ·B1(X,Y, Z) +B2(Y, Z)

C(X,Y, Z) = X · C1(X,Y, Z) + C2(Y,Z)

where B2 ̸= 0 and C2 ̸= 0 clearly. Let p1, . . . , pr+1 (resp. q1, . . . , qr+1) be the
zeros of B2(Y,Z) (resp. C2(Y, Z)) in H = ProjC[Y,Z]. Then deg(F1F2H) = r
is equivalent to say that there exist i, j such that

pi ̸∈ {q1, . . . , qr+1}, qj ̸∈ {p1, . . . , pr+1},
{p1, . . . , p̂i, . . . , pr+1} = {q1, . . . , q̂j , . . . , qr+1} := Γ.

After a coordinate transformation over Y,Z, we can assume pi = [1, 0] = Z(Z),
qi = [0, 1] = Z(Y ) and IΓ = I(G) for a homogeneous polynomial G ∈ C[X,Y ]
with degG = r. So

B(X,Y, Z) = X ·B1(X,Y, Z) + a · ZG(Y,Z),

C(X,Y, Z) = X · C1(X,Y, Z) + b · Y G(Y, Z),

where a, b ̸= 0. □
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Proposition 3.2. Let F1, F2 be two curves of degree r + 1 (≥ 1) over P2 with
no common component. Let H be a hyperplane over P2. Consider the zero
dimensional subscheme ∆ of P2:

∆ = F1F2 − F1F2H.

Suppose deg∆ = r2 + r + 1. Then ∆ = SingF , for some foliation F of degree
r over P2. In particular, ∆ is a local complete intersection.

Proof. By Lemma 3.1, we can choose a coordinate such that F1 = Z(B), F2 =
Z(C), H = Z(X), where

B(X,Y, Z) = −X ·B1(X,Y, Z) + ZG(Y,Z),

C(X,Y, Z) = −X · C1(X,Y, Z)− Y G(Y,Z).

Here G ∈ C[Y, Z] is a nonzero homogeneous polynomial of degree r. Now let

A(X,Y, Z) = Y ·B1(X,Y, Z) + Z · C1(X,Y, Z).

Then A,B,C have no common factors and

(∗) X ·A(X,Y, Z) + Y ·B(X,Y, Z) + Z · C(X,Y, Z) = 0.

Claim: ∆ = F1F2F3, where F3 = Z(A).
By Definition 2.1, I∆ = [IF1F2 : IF1F2H ]. Then the equation (∗) implies

A,B,C ∈ I∆ clearly. So ∆ ⊂ F1F2F3. By Corollary 2.7, we have

h1(IF1F2−F1F2F3
(r − 2)) = h0(IF1F2F3

(r + 1))− h0(IF1F2
(r + 1)) ≥ 3− 2 = 1.

Since OP2(k) is k-very ample, we see that deg(F1F2 − F1F2F3) ≥ r, which
implies

(4) deg(F1F2F3) ≤ r2 + r + 1 = deg∆.

So ∆ = F1F2F3 and the Claim follows.
Now consider

ω = AdX +BdX + CdZ ∈ ΩC3−{0},

which corresponds to a foliation F of degree r over P2, and it is clear that
∆ = SingF . □

Now we have the following theorem, which is nothing but Theorem 1.1.

Theorem 3.3. Suppose ∆ is a zero dimensional subscheme of P2. Then the
following conditions are equivalent.

(1) ∆ is the singular locus of a foliation F in P2 of degree r.
(2) We can write ∆ as

∆ = F1F2 − F1F2H,

with deg∆ = r2+r+1, where F1, F2 are two curves of degree r+1(≥ 1)
over P2 with no common component and H is a hyperplane over P2.

Proof. (1) =⇒ (2) : Proposition 2.4. (2) =⇒ (1) : Proposition 3.2. □
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Remark 3.4. In the context of Lemma 3.1, consider the syzygy exact sequence

0 // E1 // O(−F1)⊕O(−F2)⊕O(−H)
(f1,f2,x)

// IF1F2H
// 0,

where f1 ∈ H0(O(F1)), f2 ∈ H0(O(F2)) and x ∈ H0(O(H)). Note that E1 is
a subsheaf of a locally free sheaf with a torsion-free quotient, so it is reflexive
(see [7]), and moreover it is locally free of rank 2. Considering the composition

ϕ : E1 → O(−F1)⊕O(−F2)⊕O(−H) → O(−H),

we can see that the image of ϕ in O(−H) is I∆(−H), by the definition of I∆,
where ∆ = F1F2 − F1F2H. Thus kerϕ is an invertible sheaf. By comparing
the first Chern classes, we get

0 → O(−F1 − F2) → E1 → I∆(−H) → 0.

(See [9], Section 5 for more details.) Let E = E1(2r + 2), then

0 → O → E → I∆(2r + 1) → 0.

So

c1(E) ≡ (2r + 1)H, c2(E) = ∆ = F1F2 − F1F2H.

Since for any r ≥ 0 and r ̸= 1,

dimExt1(I∆(2r + 1),O) = h1(I∆(2r − 2)) = 1,

where the first equality is from Serre duality and ([6], p.234, Proposition 6.3)
and the second equality is from Proposition 2.10, we have ΩP2(r + 2) = E =
E1(2r + 2). So we have the following exact sequence

(5) 0 −→ ΩP2 −→ O(−1)⊕O(−1)⊕O(r − 1) −→ IF1F2H(r) −→ 0,

where r ≥ 0, r ̸= 1 and deg(F1F2H) = r. In particular, if r = 0, then
IF1F2H = O and we get

0 −→ ΩP2 −→ O(−1)⊕O(−1)⊕O(−1) −→ OP2 −→ 0,

which is just the Euler exact sequence.

Corollary 3.5 ([4], Theorem 4.1). Suppose ∆ is a zero dimensional subscheme
of P2.

(1) ∆ is the singular locus of a foliation F in P2 of degree 0, if and only if
deg∆ = 1.

(2) ∆ is the singular locus of a foliation F in P2 of degree 1, if and only if
deg∆ = 3 and h0(I∆(1)) = 0.

Proof. The “only if ” parts are clear. Next we will prove the “if ” parts.
(1) If deg∆ = 0, then ∆ = p for some point p ∈ P2. So we can choose three

lines, L1, L2 through p and L3 linearly independent from them. Thus we can
write ∆ as ∆ = L1L2 − L1L2L3, which implies ∆ = SingF for some foliation
F of degree 0.
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(2) If deg∆ = 3, then h1(I∆(2)) = 0, since OP2(2) is 2-very ample. So
we see h0(I∆(2)) = 3, say H0(I∆(2)) = C{A,B,C}. Since h0(I∆(1)) = 0,
A,B,C have no common factors. Hence we assume gcd(A,B) = 1. Let F1 =
Z(A), F2 = Z(B), then Z = F1F2 is a complete intersection containing ∆ with
degZ = 4. Then deg(Z −∆) = 1, say p = Z −∆ ⊂ Z. It is clear that we can
choose a line H passing through p such that deg(ZH) = 1. So we can write
∆ as ∆ = F1F2 − F1F2H, which implies ∆ = SingF for some foliation F of
degree 1. □

Theorem 3.6. Suppose ∆ is a zero dimensional subscheme of P2 with deg∆ =
r2+ r+1 > 3. ∆ is the singular locus of a foliation F in P2 of degree r, if and
only if the following conditions hold:

(a1) h1(I∆(2r − 2)) = 1 and h1(I∆′(2r − 2)) = 0 for any ∆′ ⊂ ∆ of degree
r2 + r,

(b1) h0(I∆(r+1)) ≥ 2 and the linear system P
(
H0(I∆(r+1))

)
has no base

curve.

Proof. The “only if ” part is clear. Next we will prove the “if ” part.
By the condition (b1), we can choose A,B ∈ H0(I∆(r+1)) with gcd(A,B) =

1. Let F1 = Z(A), F2 = Z(B). Then Z = F1F2 is a complete intersection
containing ∆ with degZ = (r + 1)2. By Corollary 2.7, we have

h0(IZ−∆(1))− h0(IZ−∆′(1)) = h1(I∆(2r − 2))− h1(I∆′(2r − 2)) = 1,

for any ∆′ ⊊ ∆. Since deg(Z − ∆) = r ≥ 2, h0(IZ−∆(1)) ≤ 1. So we have
h0(IZ−∆(1)) = 1 and h0(IZ−∆′(1)) = 0, for any ∆′ ⊊ ∆. So we can choose a
line H such that ZH = Z −∆. Hence we can write ∆ as ∆ = F1F2 − F1F2H,
which implies ∆ = SingF for some foliation F of degree r. □

Remark 3.7. In fact, the condition (a1) implies that, ∆ is the zero subscheme
given by a global section of a rank 2 locally free sheaf E with c1(E) ≡ (2r+1)H
and c2(E) = ∆. Since h1(I∆(2r − 2)) = 1, we have an extension

0 −→ O −→ E −→ I∆(2r + 1) −→ 0,

which corresponds to the identity map

id ∈ Hom
(
H1(I∆(2r − 2), H1(I∆(2r − 2)

)
∼= H1(I∆(2r − 2))∨

∼= Ext1(I∆(2r + 1),O).

Tyurin ([10], Lemma 1.2 and Corollary 1) said that the extension E is locally
free if and only if ∆ is (2r − 2)-stable, i.e, h1(I∆(2r − 2)) > h1(I∆′(2r − 2))
for any ∆′ ⊊ ∆.

Now if we strengthen the condition (b1) a little, then we can weaken the
condition (a1) a little. More precisely, we have the following theorem.
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Theorem 3.8. Suppose ∆ is a zero dimensional subscheme of P2 with deg∆ =
r2+ r+1 > 3. ∆ is the singular locus of a foliation F in P2 of degree r, if and
only if the following conditions hold:

(a2) h1(I∆′(2r − 2)) = 0, for any ∆′ ⊂ ∆ of degree r2 + r,
(b2) h0(I∆(r+1)) ≥ 3, and the linear system P

(
H0(I∆(r+1))

)
has no base

curve.

Proof. The “only if ” part is clear. Next we will prove the “if ” part. By
Theorem 3.6, it suffices to prove h1(I∆(2r − 2)) = 1.

Since h0(I∆(r + 1)) ≥ 3 and P
(
H0(I∆(r + 1))

)
has no base curve, we can

choose three linearly independent elements A,B,C ∈ H0(I∆(r+1)) such that
A,B have no common factors. Let F1 = Z(A), F2 = Z(B), F3 = Z(C). Then
we see ∆ ⊂ F1F2F3. In the other hand, we see deg(F1F2F3) ≤ r2 + r + 1 =
deg∆, from the inequality (4). So ∆ = F1F2F3.

Consider
∆̃ := F1F2 − F1F2F3 = Z −∆,

where Z = F1F2 is a complete intersection of degree (r + 1)2. Then we have

s(∆̃) := min{m|h0(I∆̃(m)) ̸= 0} = 1.

(We can also see it in Remark 3.12.) Since deg ∆̃ = r ≥ 2, we see h0(I∆̃(1)) = 1.
Then applying the Cayley-Bacharach theorem (Corollary 2.7), we have

h1(I∆(2r − 2)) = h0(I∆̃(1))− h0(IZ(1)) = 1. □

Moreover, we can replace the condition (a2) by the condition (a3) in the
following theorem. In fact, they are talking about the same thing that the line

passing through ∆̃ = Z −∆ cannot pass through any another point in ∆.

Theorem 3.9 ([4]). Suppose ∆ is a zero dimensional subscheme of P2 with
deg∆ = r2 + r+1 > 3. ∆ is the singular locus of a foliation F in P2 of degree
r, if and only if the following conditions hold:

(a3) h0(I∆′(r)) = 0, for any ∆′ ⊂ ∆ of degree r2 + r,
(b2) h0(I∆(r+1)) ≥ 3, and the linear system P

(
H0(I∆(r+1))

)
has no base

curve.

Proof. The “only if ” part is clear. Next we will prove the “if ” part. By
Theorem 3.8, it suffices to prove h1(I∆′(2r− 2)) = 0 for any ∆′ ⊂ ∆ of degree
r2 + r.

By the proof of the theorem above, (b2) implies that ∆ = F1F2F3. where
F1, F2, F3 are curves of degree r + 1 and F1, F2 have no common component.

Let Z = F1F2 and ∆̃ = Z −∆, then h0(I∆̃(1)) = 1.

Claim: h0(I∆̃′(1)) = 0 for any ∆̃ ⊂ ∆̃′ ⊂ Z with deg ∆̃′ = deg ∆̃ + 1 = r + 1.

Indeed, if there exists a line H ∈ H0(I∆̃′(1)), then we have the following
exact sequence

0 −→ OP2(−1)(= IH) −→ I∆̃′ −→ OP1(−r − 1)(= I∆̃′|H) −→ 0,
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which induces

0 −→ H0(OP2(r − 2)) −→ H0(I∆̃′(r − 1)) −→ H0(OP1(−2)) = 0.

So

h0(I∆̃′(r − 1)) = h0(OP2(r − 2)) =
1

2
r2 − 1

2
r.

Then

h1(I∆̃′(r − 1)) = deg ∆̃′ − h0(O(r − 1)) + h0(I∆̃′(r − 1))

= (r + 1)− 1

2
(r + 1)r + (

1

2
r2 − 1

2
r) = 1 > 0.

Now let ∆′ = Z − ∆̃′, then it is clear that ∆′ ⊂ ∆ and deg∆′ = r2 + r. By the
Cayley-Bacharach Theorem, we see

h0(I∆′(r)) = h1(I∆̃′(r − 1)) + h0(IZ(r)) = 1 > 0,

which is a contradiction with the condition (b2). So the Claim is true.
Now for any ∆′ ⊂ ∆ with deg∆′ = r2+r, by the Cayley-Bacharach theorem

and the claim above, we have

h1(I∆′(2r − 2)) = h0(IZ−∆′(1))− h0(IZ(1)) = 0. □

This reproves a theorem of Campillo-Olivares ([4], Theorem 4.5).

3.2. Proof of the part (1) ⇐⇒ (5) of Theorem 1.2

During the proof of Theorem 1.1, it is important to find a complete intersec-
tion of degree (r+1)2 containing ∆. For this goal, we need one of the following
conditions:

(b1) h0(I∆(r+1)) ≥ 2 and the linear system P
(
H0(I∆(r+1))

)
has no base

curve,
(b2) h0(I∆(r+1)) ≥ 3 and the linear system P

(
H0(I∆(r+1))

)
has no base

curve.

In this section, we will see that the condition (b1) or (b2) can be replaced by

(b3) h0(I∆(r + 1)) ≥ 3, and h0(I∆(r)) = 0.

Consider the following question:

Question 3.10. Given a zero dimensional subscheme ∆ of P2 and a curve F ,
how many points in ∆ can be passed through by F?

We denote by deg(∆F ) the number of points in ∆ passed through by F ,
where ∆F is a zero dimensional subscheme of P2 defined by the ideal sheaf
I∆F .

Lemma 3.11. Let E be a locally free sheaf on P2 with rank 2, let s be a global
section of E, and let ∆ = Z(s) ⊂ P2 be its zero subscheme. Let s(∆) =
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min{m|h0(I∆(m)) ̸= 0}. Then for any curve F with deg(F ) ≤ s(∆), we have
deg(∆F ) ≤ ϕ(degF ), where

ϕ(degF ) =

{
deg∆−

[
deg E − s(∆)

]
·
[
s(∆)− degF

]
, if s(∆) < deg(E),

deg∆− 1
4 (deg E − degF )2, if s(∆) = deg(E).

In other words, for any ∆′ ⊂ ∆ and i > 0, if deg∆′ ≥ ϕ(i)+1 then h0(I∆′(i)) =
0.

Proof. Note that, under the assumption above, we have degF ≤ s(∆) ≤ deg E .
Consider the morphism

π = (s∨, f) : E∨ ⊕O(−F ) −→ O,

where f ∈ H0(O(F )), s ∈ H0(E) and π
(
(x, y)

)
= x · s∨ + y · f . It is clear that

Im(π) = I∆F . And let E1 = Ker(π), which is a reflexive sheaf over an algebraic
surface. So we see E1 is locally free of rank 2 and we have the following exact
sequence

0 // E1 // E∨ ⊕O(−F )
π

(s∨,f)

// I∆F
// 0.

Then we have
c(E1) = c(I∆F )

−1 · c
(
E∨ ⊕O(−F )

)
from which, the Chern classes of E1 can be computed easily:

c1(E1) = −c1(E)− c1(F ),

c2(E1) = c2(E) + c1(E) · c1(F )− c2(I∆F ).

Now let ∆̃ = ∆−∆F and Ẽ = E1(det E), similar to Remark 3.4, we see

c1(Ẽ) = c1(E)− c1(F ) ≡ (deg E − degF )H, c2(Ẽ) = ∆̃.

In other words, we have the following exact sequence

0 −→ O −→ Ẽ −→ I∆̃
(
c1(Ẽ)

)
−→ 0.

Recall the discriminant of Ẽ :
D(Ẽ) = c1(Ẽ)2 − 4c2(Ẽ) = (deg E − degF )2 − 4 deg∆ + 4deg(∆F ).

Suppose D(Ẽ) ≤ 0. Then

deg(∆F ) ≤ deg∆− 1

4
(deg E − degF )2

≤ deg∆−
[
deg E − s(∆)

]
·
[
s(∆)− degF

]
,

where the second inequality is from degF ≤ s(∆) ≤ deg E .
Suppose D(Ẽ) > 0. Then by the Bogmolov’s instability theorem ([1], p. 500),

there exists a saturated line bundle M ⊂ Ẽ such that (i) 2c1(M) − c1(Ẽ) > 0

and (ii) (2c1(M)− c1(Ẽ))2 ≥ D(Ẽ). So

degM ≥ 1

2

(
deg Ẽ +

√
D(Ẽ)

)
.
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In the other hand, since M is a maximal sub-line bundle of Ẽ , the induced

composition M → Ẽ → I∆̃
(
c1(Ẽ)

)
is non-zero, and therefore we have a non-

zero morphism

O −→ I∆̃
(
c1(Ẽ)− c1(M)

)
.

Hence

s(∆̃) ≤ deg Ẽ − degM ≤ 1

2

(
deg Ẽ −

√
D(Ẽ)

)
.

So

s(∆) ≤ s(∆̃) + s(∆F )

≤ 1

2

(
deg Ẽ −

√
D(Ẽ)

)
+ degF

=
1

2

(
deg E + degF −

√
(deg E − degF )2 − 4 deg∆ + 4deg(∆F )

)
.(∗)

Then

deg(∆F ) ≤ deg∆− 1

4
(deg E − degF )2 +

1

4
(deg E + degF − 2s(∆))2

= deg∆−
[
deg E − s(∆)

]
·
[
s(∆)− degF

]
.

Note that, by the inequality (∗), degF ≤ s(∆) and D(Ẽ) > 0 imply

s(∆) <
1

2
(deg E + degF ) ≤ 1

2
(deg E + s(∆)).

Thus s(∆) < deg E . In other words, for the case that s(∆) = deg E , we have

D(Ẽ) ≤ 0. Next is clear. □

Remark 3.12. Consider the case that E = OP2(F1)⊕OP2(F2), where degF1 =
degF2 = r+1 and F1, F2 have no common component. And let degF = r+1.
Then

deg Ẽ = r + 1, c2(Ẽ) = ∆̃ = F1F2 − F1F2F.

And D(Ẽ) = (deg Ẽ)2 − 4 deg ∆̃.

If r ̸= 1 and deg ∆̃ = r, then D(Ẽ) = (r − 1)2 > 0. So by the results in the
proof above, we have

s(∆̃) ≤ 1

2

(
deg Ẽ −

√
D(Ẽ)

)
= 1.

or say, h0(I∆̃(1)) > 0.

Corollary 3.13. Let ∆ be the singular locus of a foliation F in P2 of degree
r(≥ 2). For any curve F with deg(F ) = j ≤ r, we have

deg(∆F ) ≤ rj + 1

In other words, for any ∆′ ⊂ ∆ and j > 0, if deg∆′ ≥ rj+2 then h0(I∆′(j)) =
0.
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Proof. Just consider the locally free sheaf E = ΩP2(r + 2), where

(∗∗)


c1(E) ≡ (2r + 1)H, c2(E) = ∆,

deg∆ = r2 + r + 1,

s(∆) = r + 1.

Then it is clear. (In fact, the equations (∗∗) are enough for the results.) □

Now we return to the proof of the part (1) ⇐⇒ (5) of Theorem 1.2.

Theorem 3.14. Suppose ∆ is a zero dimensional subscheme of P2 with deg∆
= r2+r+1 > 3. ∆ is the singular locus of a foliation F in P2 of degree r(≥ 2),
if and only if the following conditions hold:

(a1) h1(I∆(2r− 2)) = 1 and h1(I∆′(2r− 2)) = 0, for any ∆′ ⊂ ∆ of degree
r2 + r,

(b3) h0(I∆(r + 1)) ≥ 3, and h0(I∆(r)) = 0.

Proof. The “only if ” part is clear. Next we will prove the “if ” part. By
Theorem 3.6, it suffices to prove that: the linear system P

(
H0(I∆(r+1))

)
has

no base curve.
Firstly, the condition (a1) can imply that ∆ is the zero subscheme of a global

section of a rank 2 locally free sheaf E , where

(∗∗)


c1(E) ≡ (2r + 1)H, c2(E) = ∆,

deg∆ = r2 + r + 1,

s(∆) = r + 1, (by the condition (b3)).

Secondly, we assume that P
(
H0(I∆(r + 1))

)
has a base curve, say G, with

degG = j(> 0). Since h0(I∆(r+1)) ≥ 3, we see j ≤ r and we can choose three
linearly independent elements A,B,C ∈ H0(I∆(r + 1)). Let

A = G ·A′, B = G ·B′, C = G · C ′,

where degA′ = degB′ = degC ′ = r − j + 1. Similar to the inequality (4), we
have the following claim.

Claim: deg(F1F2F3) ≤ (r − j)2 + (r − j) + 1, where F1 = Z(A′), F2 = Z(B′)
and F3 = Z(C ′).

By the definition, it is clear that ∆−∆G ⊂ F1F2F3, so we have

deg(∆G) = deg∆− deg(∆−∆G)(I)

≥ (r2 + r + 1)−
[
(r − j)2 + (r − j) + 1

]
= 2rj − j2 + j.

In the other hand, by Corollary 3.13, the equations (∗∗) imply

(II) deg(∆G) ≤ rj + 1.

Since
(2rj − j2 + j)− (rj + 1) = rj − j2 + j − 1 > 0,
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for any 0 < j < r+1, the inequalities (I) and (II) give a contradiction. Hence
there exists no base curves in the linear system P(H0(I∆(r + 1)). □

4. Applications

4.1. Foliations of degree r ̸= 1 on P2 are uniquely determined by its
singular locus

Question 4.1. Given a zero dimensional subscheme ∆ satisfying the condition
(2) in Theorem 1.1, how many foliations F are there such that ∆ = SingF?

For this question, Campillo and Olivares have given the answer (see [4]).
Next we will give a different proof, by using the results of Theorem 1.1.

Lemma 4.2. Let r ̸= 1. If we fix ∆ and H and assume ∆ ∩ H = ∅, then
the solution (F1, F2) of the equation ∆ = F1F2 − F1F2H is unique. Here the
“unique” means that if (F ′

1, F
′
2) satisfies ∆ = F ′

1F
′
2 − F ′

1F
′
2H, then

C{B′, C ′} = C{B,C} = H0(P2, IF1F2
(r + 1))

as C-vector spaces, where F1 = Z(B), F2 = Z(C), F ′
1 = Z(B′), F ′

2 = Z(C ′).

Proof. If r = 0, then h0(I∆(r + 1)) = 2, which implies

H0(I∆(r + 1)) = H0(IF1F2
(r + 1)) = C · {B,C}.

So C{B′, C ′} = C{B,C} is clear.
Next we consider the case that r ≥ 2. It suffices to assume that F1 = Z(B),

F2 = Z(C) and H = Z(X). And we can choose some homogeneous polynomial
A of degree r + 1 such that

H0(I∆(r + 1)) = C · {A,B,C}.

Let

Ā = A(0, Y, Z), B̄ = B(0, Y, Z), C̄ = C(0, Y, Z).

Recall the proof of Proposition 3.2, we can write B̄, C̄ as

B̄ = Z ·G(Y, Z), C̄ = −Y ·G(Y, Z),

after a suitable coordinate transformation.
Let F ′

1 = (B′ = 0) and F ′
2 = (C ′ = 0), so B′, C ′ ∈ H0(I∆(r + 1)). Thus we

can write them as

B′ = α1A+ α2B + α3C,

C ′ = β1A+ β2B + β3C.

So

B̄′ := B′(0, Y, Z) = α1Ā+ (α2Z − α3Y )G,

C̄ ′ := C ′(0, Y, Z) = β1Ā+ (β2Z − β3Y )G.

(i) If α1 = β1 = 0, then C · {B′, C ′} = C · {B,C}.
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(ii) Suppose α1 ̸= 0 or β1 ̸= 0. We say α1 ̸= 0. (The case that β1 ̸= 0 is
similar.) In this case,

⟨B̄′, C̄ ′⟩ = ⟨B̄′, C̄ ′ − β1

α1
B̄′⟩ = ⟨B̄′, (γ2Z − γ3Y )G⟩,

where γi = βi − β1

α1
αi, for i = 2, 3. So

⟨B′, C ′, X⟩ = ⟨B̄′, (γ2Z − γ3Y )G,X⟩.

If (F ′
1, F

′
2) satisfies ∆ = F ′

1F
′
2 − F ′

1F
′
2H, then

r = deg(F ′
1F

′
2H) =

∑
p∈P2

dimC
Op

⟨B′, C ′, X⟩

=
∑
p∈H

dimC
Op,H

⟨B̄′, (γ2Z − γ3Y )G⟩
,

which implies that there are r common zeros of B̄′ and (γ2Z − γ3Y )G = 0. So
there is at leat r − 1 common zeros of B̄′ and G, which is denoted by ∆′ as a
zero dimensional subscheme. Note that

B′ ∈ H0(I∆+∆′(r + 1)), ∆+∆′ ⊂ F1F2.

Since deg(F1F2) = (r + 1)2, deg(∆ + ∆′) = r2 + r + 1 + r − 1 = (r + 1)2 − 1,
we can choose a point p ∈ H such that

p = F1F2 − (∆ +∆′).

By the Cayley-Bacharach theorem (Corollary 2.7), we have

(∗) h0(I∆+∆′(r + 1))− h0(IF1F2
(r + 1)) = h1(Ip(r − 2)) = 0, for r ≥ 2.

So B′ ∈ H0(IF1F2
(r + 1)) which is generated by B,C. Thus α1 = 0, a contra-

diction. □

Remark 4.3. For r = 1, the lemma above is not true. In this case,

h0(IF1F2−p(2))− h0(IF1F2(2)) = h1(Ip(−1)) = 1.

So the equation (∗) in the proof of Lemma 4.2 above does not hold.

Proposition 4.4. Suppose F is a foliation of degree r(̸= 1) in P2. Then F is
determined uniquely by its singular locus ∆ = SingF .

Proof. Firstly, by taking a coordinate transformation over X, we can assume
∆ ∩ (X = 0) = ∅. Suppose F and F ′ are two different foliations such that
∆ = SingF = Sing(F ′). Then the foliation F (resp. F ′) corresponds to

(6) ω = AdX +BdY + CdZ (resp. ω′ = A′dX +B′dY + C ′dZ),

where B,C (resp. B′, C ′) have no common components and

XA+ Y B + ZC = 0 (resp. XA′ + Y B′ + ZC ′ = 0),
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Then we can write ∆ as

∆ = F1F2 − F1F2H = F ′
1F

′
2 − F ′

1F
′
2H,

where F1 = Z(B), F2 = Z(C), F ′
1 = Z(B′), F ′

2 = Z(C ′) and H = Z(X).
Secondly, by a coordinate transformation over Y,Z, we can write B,C as

(7) B = XB1 + ZG(Y, Z), C = XC1 − Y G(Y,Z).

Then by Lemma 4.2, we can write

B′ = α1B + α2C = X(α1B1 + α2C1) + (α1Z − α2Y )G,

C ′ = γ1B + γ2C = X(γ1B1 + γ2C1) + (γ1Z − γ2Y )G.

Since X|(Y B′ + ZC ′), we have

0 = Y (α1Z − α2Y ) + Z(γ1Z − γ2Y ) = γ1Z
2 − α2Y

2 + (α1 − γ2)Y Z,

which implies α2 = γ1 = 0 and α1 = γ2 := β. So

(A′, B′, C ′) = β · (A,B,C)

which induces F = F ′. □

4.2. Foliations of degree 1

Next we consider the case r = 1:

Lemma 4.5. Let p be a point on P2 with p ̸∈ ∆. Then ∆ + p is a complete
intersection if and only if h0(I∆′+p(1)) = 0 for any ∆′ ⊂ ∆ with deg∆′ = 2.

Proof. If ∆+ p is a complete intersection, say F1F2, then by Corollary 2.7, we
have

h0(I∆′+p(1)) = h0(IF1F2
(1)) + h1(Iq) = 0,

where ∆′ ⊂ ∆ with deg∆′ = 2 and q = F1F2 − (∆′ + p) = ∆−∆′.
Next we will show the “if ” part. Consider the following exact sequence

0 −→ I∆+p −→ I∆ −→ Op −→ 0,

and we get

h0(I∆+p(2)) ≥ h0(I∆(2))− 1 = 2.

So we can choose two elements B,C ∈ H0(I∆+p(2)) such that {B,C} spans a
sub-vector space of dimension 2.

We claim that B,C have no common component. Otherwise, we write B =
B1P and C = C1P , for some P of degP = 1. Since deg(B1C1) = 1 and
h0(I∆(1)) = 0 (by Corollary 3.5), we see that P must pass through a subscheme
∆′ ⊂ ∆ with deg∆′ = 2, which is a contradiction with the assumption.

Let F1 = (B = 0), F2 = (C = 0), then F1F2 = ∆ + p is a complete
intersection. □
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Recall the classification of such ∆ in [4], Section 4:
(a) Three different points q0, q1, q2 in P2, not lying on the same line. Let L1

(resp. L2, L3) denote the line q1q2 (resp. q0q2, q0q1).
(b) Two points q1, q2 in P2, plus an infinitely near one q0 over (say) q2, and

which does not correspond to the direction of the line joining q1 with q2. Let
L′
1 (resp. L′

2) denote the line q1q2 (resp. q0q2).
(c) One single point q2 in P2, plus an infinitely near one q0 over q2, plus

another infinitely near one q1 over q0, which does not correspond neither to
the direction of the exceptional divisor of the blow up of q2, nor to the strict
transform of the line joining q2 with q0 in P2. Let L′′

1 (resp. L′′
2) denote the

line q0q2 (resp. q1q0).

Corollary 4.6. For any point p ∈ P2 with p ̸∈ ∆, ∆+ p is a complete inter-
section except in the following cases:

(i) ∆ belongs to the case (a) and p ∈ L1 or p ∈ L2 or p ∈ L3,
(ii) ∆ belongs to the case (b) and p ∈ L′

1 or p ∈ L′
2,

(iii) ∆ belongs to the case (c) and p ∈ L′′
1 or p ∈ L′′

2 .

For any foliation F on P2 such that SingF = ∆. By a coordinate transfor-
mation, we can assume that (X = 0) ∩∆ = ∅. So F corresponds to

ω = AdX +BdY + CdZ,

where B,C have no common component and XA + Y B + ZC = 0. Let p be
the unique zero of B = C = X = 0. So F1F2H = p, where F1 = (B = 0),
F2 = (C = 0) and H = (X = 0).

Note that such p determines a unique foliation. The proof is similar to
that of Proposition 4.4: Indeed, we have equation (7), where now G(Y,Z) is
a polynomial of degree r = 1, and Z(G) is the point p for this foliation F .
Say G(Y, Z) = Y + aZ, so that p = [0,−a, 1], a ̸= 0. It follows from Remark
4.3 that there exists E ∈ H0(I∆(2))−H0(IF1F2(2)) such that {B,C,E} spans
H0(I∆(2)). Hence, given a foliation F with F ′ with SingF ′ = ∆ as in equation
(6), we can write its coefficients B′ and C ′ as linear combinations of B, C and
E and compute the point p′ = F1F2H. It turns out that p = p′ if and only if
ω′ = βω.

Hence the set of foliations F such that ∆ = SingF , say M(1,∆), is param-
eterized by the set

S = {p ∈ H|∆+ p is a complete intersection.}

By Corollary 4.4 above, we see that
(1) for the case (a), S = H − {q1, q2, q3} ∼= C − {0, 1}, where qi = Li ∩H

for i = 1, 2, 3,
(2) for the case (b), S = H − {q′1, q′2} ∼= C − {0}, where q′i = L′

i ∩ H for
i = 1, 2,

(3) for the case (c), S = H − {q′′1 , q′′2} ∼= C − {0}, where q′′i = L′′
i ∩ H for

i = 1, 2.
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In [4], Section 4, the authors gave an algebraic characterization by discussing
the 3 cases of ∆ directly.
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