Communications of the Korean Mathematical Society (대한수학회논문집)
- Volume 9 Issue 4
- /
- Pages.905-915
- /
- 1994
- /
- 1225-1763(pISSN)
- /
- 2234-3024(eISSN)
STALE REDUCTIONS OF SINGULAR PLANE QUARTICS
- Kang, Pyung-Lyun (College of Science and Technology, Hongik University, Chochiwon 339-800)
- Published : 1994.10.01
Abstract
Let $M_g$ be the moduli space of isomorphism classes of genus g smooth curves. It is a quasi-projective variety of dimension 3g - 3, when $g > 2$. It is known that a complete subvariety of $M_g$ has dimension $< g-1 [D]$. In general it is not known whether this bound is rigid. For example, it is not known whether $M_4$ has a complete surface in it. But one knows that there is a complete curve through any given finite points [H]. Recently, an explicit example of a complete curve in moduli space is given in [G-H]. In [G-H] they constructed a complete curve of $M_3$ as an intersection of five hypersurfaces of the Satake compactification of $M_3$. One way to get a complete curve of $M_3$ is to find a complete one dimensional family $p : X \to B$ of plane quartics which gives a nontrivial morphism from the base space B to the moduli space $M_3$. This is because every non-hyperelliptic smooth curve of genus three can be realized as a nonsingular plane quartic and vice versa. This paper has come out from the effort to find such a complete family of plane quartics. Since nonsingular quartics form an affine space some fibers of p must be singular ones. In this paper, due to the semistable reduction theorem [M], we search singular plane quartics which can occur as singular fibers of the family above. We first list all distinct plane quartics in terms of singularities.
Keywords