In this paper, we propose a new method to select colors representing the meaning of text contents based on the cognitive relation between words and colors, Our method is designed on the previous study revealing the existence of crucial words to estimate the colors associated with the meaning of text contents, Using the associative probability of each color with a given word and the strength of color association of the word, we estimate the probability of colors associated with a given text. The goal of this study is to propose a system to recommend the cognitively plausible colors for the meaning of the input text. To build a versatile and efficient database used by our system, two psychological experiments were conducted by using news site articles. In experiment 1, we collected 498 words which were chosen by the participants as having the strong association with color. Subsequently, we investigated which color was associated with each word in experiment 2. In addition to those data, we employed the estimated values of the strength of color association and the colors associated with the words included in a very large corpus of newspapers (approximately 130,000 words) based on the similarity between the words obtained by Latent Semantic Analysis (LSA). Therefore our method allows us to select colors for a large variety of words or sentences. Finally, we verified that our system cognitively succeeded in proposing the colors associated with the meaning of the input text, comparing the correct colors answered by participants with the estimated colors by our method. Our system is expected to be of use in various types of situations such as the data visualization, the information retrieval, the art or web pages design, and so on.