In this paper, we proposed a method which corresponds people under the structured spaces with multiple cameras. The correspondence takes an important role for using multiple camera system. For solving this correspondence, the proposed method consists of three main steps. Firstly, moving objects are detected by background subtraction using a multiple background model. The temporal difference is simultaneously used to reduce a noise in the temporal change. When more than two people are detected, those detected regions are divided into each label to represent an individual person. Secondly, the detected region is segmented as features for correspondence by a criterion with the color distribution and context information of human body. The segmented region is represented as a set of blobs. Each blob is described as Gaussian probability distribution, i.e., a person model is generated from the blobs as a Gaussian Mixture Model (GMM). Finally, a GMM of each person from a camera is matched with the model of other people from different cameras by maximum likelihood. From those results, we identify a same person in different view. The experiment was performed according to three scenarios and verified the performance in qualitative and quantitative results.