In this paper, we propose a feature extraction method which extracts directional features of handwritten numerals by using the projection runlength. Our directional featrures are obtained from four directional images, each of which contains horizontal, vertical, right-diagonal and left-diagonal lines in entire numeral shape respectively. A conventional method which extracts directional features by using Kirsch masks generates edge-shaped double line directional images for four directions, whereas our method uses the projections and their runlengths for four directions to produces single line directional images for four directions. To obtain the directional projections for four directions from a numeral image, some preprocessing steps such as thinning and dilation are required, but the shapes of resultant directional lines are more similar to the numeral lines of input numerals. Four [$4{\times}4$] directional features of a numeral are obtained from four directional line images through a zoning method. By using a hybrid feature which is made by combining our feature with the conventional features of a mesh features, a kirsch directional feature and a concavity feature, higher recognition rates of the handwrittern numerals can be obtained. For recognition test with given features, we use a multi-layer perceptron neural network classifier which is trained with the back propagation algorithm. Through the experiments with the handwritten numeral database of Concordia University, we have achieved a recognition rate of 97.85%.