In this paper, we propose the development of Artificial Hippocampus Algorithm(AHA) which remodels a principle of brain of hippocampus. Hippocampus takes charge auto-associative memory and controlling functions of long-term or short-term memory strengthening. We organize auto-associative memory based 4 steps system (EC, DG CA3, and CA1) and improve speed of teaming by addition of modulator to long-term memory teaming. In hippocampus system, according to the 3 steps order, information applies statistical deviation on Dentate Gyrus region and is labeled to responsive pattern by adjustment of a good impression. In CA3 region, pattern is reorganized by auto-associative memory. In CA1 region, convergence of connection weight which is used long-term memory is learned fast a by neural network which is applied modulator. To measure performance of Artificial Hippocampus Algorithm, PCA(Principal Component Analysis) and LDA(Linear Discriminants Analysis) are applied to face images which are classified by pose, expression and picture quality. Next, we calculate feature vectors and learn by AHA. Finally, we confirm cognitive rate. The results of experiments, we can compare a proposed method of other methods, and we can confirm that the proposed method is superior to the existing method.