Recently, four speech coding techniques, namely, SBC-APCM(sub-band coding adaptive PCM), RPE-LPC(regualr pulse excitation linear predictive codec), MPE-LTP(multi-pulse excited long-term prediction) and CELP (code-excited linear prediction) are proposed for digital mobile radio applications. However, a performance comparison of these coders in the Rayleigh fading environment has not been made yet. In this paper, the performances of the four spech coders in the random bit error and burst error environment are investigated. For the channel coding of SBC-APCM, RPE-LPC and MPE-LTP, the sensitivity of output bit stream is measured and a bit selective forward error correction is provided acording to the measured bit sensitivity. And for an attempt to improve the performance of CELP, an optimum quantizer is applied for transmitting scalar quantities in CELP. However, an improvement over the conventional approach is found to be negligible. For the channel coding of CELP, Reed-Solomon code, Golay code, convolutional code of rate 1/2 shows the best performance. Finally, from the simulation results, it is concluded that CELP is the best candidate for digital mobile radio and is followed by MPE-LTP, SBC-APCM and RPE-LPC.