• Title/Summary/Keyword: summability

Search Result 60, Processing Time 0.019 seconds

On the Results of Summability for Fourier series (푸리에 급수에 대한 총합가능성의 결과들에 관하여)

  • Lee, Jung Oh
    • Journal for History of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.233-246
    • /
    • 2017
  • $Ces{\grave{a}}ro$ summability is a generalized convergence criterion for infinite series. We have investigated the classical results of summability for Fourier series from 1897 to 1957. In this paper, we are concerned with the summability and summation methods for Fourier Series from 1960 to 2010. Many authors have studied the subject during this period. Especially, G.M. Petersen,$K{\hat{o}}si$ Kanno, S.R. Sinha, Fu Cheng Hsiang, Prem Chandra, G. D. Dikshit, B. E. Rhoades and others had studied neoclassical results on the summability of Fourier series from 1960 to 1989. We investigate the results on the summability for Fourier series from 1990 to 2010 in section 3. In conclusion, we present the research minor lineage on summability for Fourier series from 1960 to 2010. $H{\ddot{u}}seyin$ Bor is the earliest researcher on ${\mid}{\bar{N}},p_n{\mid}_k$-summability. Thus we consider his research results and achievements on ${\mid}{\bar{N}},p_n{\mid}_k$-summability and ${\mid}{\bar{N}},p_n,{\gamma}{\mid}_k$-summability.

On the Summability of Infinite Series and Hüseyin Bor (무한급수의 총합 가능성과 후세인 보르에 관하여)

  • Lee, Jung Oh
    • Journal for History of Mathematics
    • /
    • v.30 no.6
    • /
    • pp.353-365
    • /
    • 2017
  • In general, there is summability among the mathematical tools that are the criterion for the convergence of infinite series. Many authors have studied on the summability of infinite series, the summability of Fourier series and the summability factors. Especially, $H{\ddot{u}}seyin$ Bor had published his important results on these topics from the beginning of 1980 to the end of 1990. In this paper, we investigate the minor academic genealogy of teachers and pupils from Fourier to $H{\ddot{u}}seyin$ Bor in section 2. We introduce the $H{\ddot{u}}seyin$ Bor's major results of the summability for infinite series from 1983 to 1997 in section 3. In conclusion, we summarize his research characteristics and significance on the summability of infinite series. Also, we present the diagrams of $H{\ddot{u}}seyin$ Bor's minor academic genealogy from Fourier to $H{\ddot{u}}seyin$ Bor and minor research lineage on the summability of infinite series.

An Application of Absolute Matrix Summability using Almost Increasing and δ-quasi-monotone Sequences

  • Ozarslan, Hikmet Seyhan
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.2
    • /
    • pp.233-240
    • /
    • 2019
  • In the present paper, absolute matrix summability of infinite series is studied. A new theorem concerning absolute matrix summability factors, which generalizes a known theorem dealing with absolute Riesz summability factors of infinite series, is proved using almost increasing and ${\delta}$-quasi-monotone sequences. Also, a result dealing with absolute $Ces{\grave{a}}ro$ summability is given.

On the classical results of Cesàro summability for Fourier series (푸리에 급수에 대한 체사로 총합가능성의 고전적 결과에 관하여)

  • Lee, Jung Oh
    • Journal for History of Mathematics
    • /
    • v.30 no.1
    • /
    • pp.17-29
    • /
    • 2017
  • This paper is concerned with the $Ces{\grave{a}}ro$ summability of Fourier series. Many authors have studied on the summability of Fourier series up to now. Also, G. H. Hardy and J. E. Littlewood [5], Gaylord M. Merriman [18], L. S. Bosanquet [1], Fu Traing Wang [24] and others had studied the $Ces{\grave{a}}ro$ summability of Fourier series until the first half of the 20th century. In the section 2, we reintroduce Ernesto $Ces{\grave{a}}ro^{\prime}s$ life and the meaning of mathematical history for $Ces{\grave{a}}ro^{\prime}s$ work. In the section 3, we investigate the classical results of summability for Fourier series from 1897 to the mid-twentieth century. In conclusion, we restate the important classical results of several theorems of $Ces{\grave{a}}ro$ summability for Fourier series. Also, we present the research minor lineage of $Ces{\grave{a}}ro$ summability for Fourier series.

A RECENT EXTENSION OF THE WEIGHTED MEAN SUMMABILITY OF INFINITE SERIES

  • YILDIZ, SEBNEM
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.1_2
    • /
    • pp.117-124
    • /
    • 2021
  • We obtain a new matrix generalization result dealing with weighted mean summability of infinite series by using a new general class of power increasing sequences obtained by Sulaiman [9]. This theorem also includes some new and known results dealing with some basic summability methods.

STATISTICAL A-SUMMABILITY OF DOUBLE SEQUENCES AND A KOROVKIN TYPE APPROXIMATION THEOREM

  • Belen, Cemal;Mursaleen, Mohammad;Yildirim, Mustafa
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.851-861
    • /
    • 2012
  • In this paper, we define the notion of statistical A-summability for double sequences and find its relation with A-statistical convergence. We apply our new method of summability to prove a Korovkin-type approximation theorem for a function of two variables. Furthermore, through an example, it is shown that our theorem is stronger than classical and statistical cases.

On Generalized Absolute Riesz Summability Factor of Infinite Series

  • Sonker, Smita;Munjal, Alka
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.37-46
    • /
    • 2018
  • The objective of the present manuscript is to obtain a moderated theorem proceeding with absolute Riesz summability ${\mid}{\bar{N}},p_n,{\gamma};{\delta}{\mid}_k$ by applying almost increasing sequence for infinite series. Also, a set of reduced and well-known factor theorems have been obtained under suitable conditions.