References
-
E. S. BELINSKII, Strong summability of Fourier series of the periodic functions from
$H^p$ (0 < p${\leq}$ 1), Constructive Approximation 12(2) (1996), 187-195. https://doi.org/10.1007/BF02433039 - Huseyin BOR, Absolute Norlund summability factors of power series and Fourier series, Ann. Polon. Math., 56 (1991), 11-17. https://doi.org/10.4064/ap-56-1-11-17
- Huseyin BOR, A note on local property of factored Fourier series, Nonlinear Analysis Theory Methods & Applications, 64(3) (2006), 513-517. https://doi.org/10.1016/j.na.2005.02.126
- Huseyin BOR, A study on local properties of Fourier series, Nonlinear Analysis: Theory, Methods & Applications 57(2) (2004), 191-197. https://doi.org/10.1016/j.na.2004.02.008
- Huseyin BOR, Local properties of factored Fourier series, Applied Mathematics and Computation 212(1) (2009), 82-85. https://doi.org/10.1016/j.amc.2009.02.001
-
Huseyin BOR, Local property of
${\mid}{\bar{N}},p_n{\mid}_k$ summability of factored Fourier series, Bull. Inst. Math. Acad. Sinica, 17 (1989), 165-170. -
Huseyin BOR, On local property of
${\mid}{\bar{N}},p_n,{\delta}{\mid}_k$ summability of factored Fourier series, Journal of mathematical analysis and applications, 179(2) (1993), 646-649. https://doi.org/10.1006/jmaa.1993.1375 - Huseyin BOR, On The Localization of Factored Fourier Series, Acta Universitatis Apulensis 24 (2010), 239-245.
-
Huseyin BOR, On the local property of
${\mid}{\bar{N}},p_n{\mid}_k$ summability of factored Fourier series, J. Math. Anal. Appl., 163 (1992), 220-226. https://doi.org/10.1016/0022-247X(92)90289-P -
Prem CHANDRA, On the
${\mid}E,q{\mid}$ summability of a Fourier series and its conjugate series, Riv. Mar. Univ. Parma, 4(3) (1977), 65-78. -
Prem CHANDRA, Ganesh D. DIKSHIT, On the
${\mid}B{\mid}$ and${\mid}E,q{\mid}$ summability of a fourier series its conjugate series and their derived series, Indian J. Pure appl. Math, 12(11) (1981), 1350-1360. - H. P. DIKSHIT, Arun Kumar, Absolute summability of Fourier series with factors, Pacific Journal of Mathematics, 61(1) (1975), 59-69. https://doi.org/10.2140/pjm.1975.61.59
- Ganesh D. DIKSHIT, Charles Sparks Rees, Absolute Riesz summability of Fourier series, II, Journal of mathematical analysis and applications, 102(2) (1984), 549-565. https://doi.org/10.1016/0022-247X(84)90192-6
- Hiroshi HIROKAWA, On the absolute Cesaro summability of Fourier series, Proceedings of the American Mathematical Society 13(2) (1962), 236-243. https://doi.org/10.1090/S0002-9939-1962-0136932-8
-
Fu Cheng HSIANG, On
${\mid}C,1{\mid}$ Summability Factors of Fourier series at a given point, Pacific Journal Math, 33(1) (1970), 139-147. https://doi.org/10.2140/pjm.1970.33.139 - Fu Cheng HSIANG, On the Absolute Summability of a Fourier Series and its Conjugate Series, Proceedings of the American Mathematical Society, 11(1) (1960), 32-38. https://doi.org/10.1090/S0002-9939-1960-0111977-0
- Kosi KANNO, on the absolute summability of fourier series (II), Tohoku Mathematical Journal, Second Series 1 13(2) (1961), 201-215.
- Shyam LAL, Hare Krishna Nigam, On almost (N,p,q) summability of conjugate Fourier series, International Journal of Mathematics and Mathematical Sciences, 25(6) (2001), 365-372. https://doi.org/10.1155/S0161171201005130
-
Shyam LAL, Prem Narain Singh, On the study of conjugate series of a Fourier series by
$K^{\lambda}$ -summability methods, Tamkang Journal of Mathematics, 34(2) (2003), 147-154. -
Jung Oh LEE, A brief study on Bhatia's research of
$L^1$ -convergence, The Korean Journal for History of Mathematics, 27(1) (2014), 81-93. https://doi.org/10.14477/jhm.2014.27.1.081 - Jung Oh LEE, On Classical Studies for the Summability and Convergence of Double Fourier Series, The Korean Journal for History of Mathematics, 27(4) (2014), 285-297. https://doi.org/10.14477/jhm.2014.27.4.285
-
Jung Oh LEE, On
$L^p(T^2)$ -convergence and Moricz, Journal for History of Mathematics, 28(6) (2015), 321-332. https://doi.org/10.14477/jhm.2015.28.6.321 - Jung Oh LEE, On the classical results of Cesaro summability for Fourier series, Journal for History of Mathematics, 30(1) (2017), 17-29. https://doi.org/10.14477/jhm.2017.30.1.017
-
Jung Oh LEE, The Life of Fourier, the Small Lineage of His younger scholars and a theorem of Telyakovskii on
$L^1$ -convergence, The Korean Journal for History of Mathematics, 22(1) (2009), 25-40. - N. L. PACHULIA, On Strong Summability of Fourier Series of Summable Functions, Ukrainian Mathematical Journal, 52(8) (2000), 1264-1273. https://doi.org/10.1023/A:1010357105483
- G. M. PETERSEN, Summability of a class of Fourier series, Proceedings of the American Mathematical Society, 11(6) (1960), 994-998. https://doi.org/10.1090/S0002-9939-1960-0120499-2
- A. Yu PETROVICH, On The Summability of generalized Fourier series by Abel's method, Mathematics of the USSR-Sbornik, 50(1) (1985), 227-239. https://doi.org/10.1070/SM1985v050n01ABEH002826
- B. E. RHOADES, Matrix summability of Fourier series based on inclusion theorems II, Journal of mathematical analysis and applications, 130(2) (1988), 525-537. https://doi.org/10.1016/0022-247X(88)90328-9
-
Mehmet Ali SARIGOL, On local property of
${\mid}A{\mid}_k$ summability of factored Fourier series, Journal of mathematical analysis and applications, 188(1) (1994), 118-127. https://doi.org/10.1006/jmaa.1994.1415 - Mehmet Ali SARIGOL, On the local properties of factored Fourier series, Applied Mathematics and Computation 216(11) (2010), 3386-3390. https://doi.org/10.1016/j.amc.2010.04.070
- N.P. SCHEMBARI, D. WATERMAN, (C,1) Summability of the Differentiated Fourier Series, Journal of Mathematical Analysis and Applications, 191(3) (1995), 633-646. https://doi.org/10.1006/jmaa.1995.1153
- S.R. SINHA, A Theorem on the absolute Cesaro summability of fourier series, Proceedings of the National Institute of Sciences of India: Physical sciences 29(1-3) (1963), 302.
-
W. T. SULAIMAN, On local property of
${\mid}{\bar{N}},p_n,{\delta}{\mid}_k$ summability of factored Fourier series, Journal of mathematical analysis and applications 292(2) (2004), 340-343. https://doi.org/10.1016/j.jmaa.2003.10.045 - Gen-ichiro SUNOUCHI, Some criteria for the absolute summability of a Fourier series, Tohoku Mathematical Journal, Second Series 19(3) (1967), 311-314.
- Istvan SZALAY, On the absolute summability of Fourier series, Tohoku Mathematical Journal Second Series 21(4) (1969), 523-531.
- Antoni ZYGMUND, Trigonometric series, Vol.1. Cambridge Univ.Press, Cambridge, 1959.
- https://en.wikipedia.org/wiki.
- https://www.genealogy.math.ndsu.nodak.edu.