• 제목/요약/키워드: 푸리에 급수의 총합가능성

검색결과 5건 처리시간 0.014초

이중 푸리에 급수의 총합가능성과 수렴성에 대한 고전적인 연구들에 관하여 (On Classical Studies for Summability and Convergence of Double Fourier Series)

  • 이정오
    • 한국수학사학회지
    • /
    • 제27권4호
    • /
    • pp.285-297
    • /
    • 2014
  • G. H. Hardy laid the foundation of classical studies on double Fourier series at the beginning of the 20th century. In this paper we are concerned not only with Fourier series but more generally with trigonometric series. We consider Norlund means and Cesaro summation method for double Fourier Series. In section 2, we investigate the classical results on the summability and the convergence of double Fourier series from G. H. Hardy to P. Sjolin in the mid-20th century. This study concerns with the $L^1(T^2)$-convergence of double Fourier series fundamentally. In conclusion, there are the features of the classical results by comparing and reinterpreting the theorems about double Fourier series mutually.

푸리에 급수에 대한 총합가능성의 결과들에 관하여 (On the Results of Summability for Fourier series)

  • 이정오
    • 한국수학사학회지
    • /
    • 제30권4호
    • /
    • pp.233-246
    • /
    • 2017
  • $Ces{\grave{a}}ro$ summability is a generalized convergence criterion for infinite series. We have investigated the classical results of summability for Fourier series from 1897 to 1957. In this paper, we are concerned with the summability and summation methods for Fourier Series from 1960 to 2010. Many authors have studied the subject during this period. Especially, G.M. Petersen,$K{\hat{o}}si$ Kanno, S.R. Sinha, Fu Cheng Hsiang, Prem Chandra, G. D. Dikshit, B. E. Rhoades and others had studied neoclassical results on the summability of Fourier series from 1960 to 1989. We investigate the results on the summability for Fourier series from 1990 to 2010 in section 3. In conclusion, we present the research minor lineage on summability for Fourier series from 1960 to 2010. $H{\ddot{u}}seyin$ Bor is the earliest researcher on ${\mid}{\bar{N}},p_n{\mid}_k$-summability. Thus we consider his research results and achievements on ${\mid}{\bar{N}},p_n{\mid}_k$-summability and ${\mid}{\bar{N}},p_n,{\gamma}{\mid}_k$-summability.

푸리에 급수에 대한 체사로 총합가능성의 고전적 결과에 관하여 (On the classical results of Cesàro summability for Fourier series)

  • 이정오
    • 한국수학사학회지
    • /
    • 제30권1호
    • /
    • pp.17-29
    • /
    • 2017
  • This paper is concerned with the $Ces{\grave{a}}ro$ summability of Fourier series. Many authors have studied on the summability of Fourier series up to now. Also, G. H. Hardy and J. E. Littlewood [5], Gaylord M. Merriman [18], L. S. Bosanquet [1], Fu Traing Wang [24] and others had studied the $Ces{\grave{a}}ro$ summability of Fourier series until the first half of the 20th century. In the section 2, we reintroduce Ernesto $Ces{\grave{a}}ro^{\prime}s$ life and the meaning of mathematical history for $Ces{\grave{a}}ro^{\prime}s$ work. In the section 3, we investigate the classical results of summability for Fourier series from 1897 to the mid-twentieth century. In conclusion, we restate the important classical results of several theorems of $Ces{\grave{a}}ro$ summability for Fourier series. Also, we present the research minor lineage of $Ces{\grave{a}}ro$ summability for Fourier series.

무한급수의 총합 가능성과 후세인 보르에 관하여 (On the Summability of Infinite Series and Hüseyin Bor)

  • 이정오
    • 한국수학사학회지
    • /
    • 제30권6호
    • /
    • pp.353-365
    • /
    • 2017
  • In general, there is summability among the mathematical tools that are the criterion for the convergence of infinite series. Many authors have studied on the summability of infinite series, the summability of Fourier series and the summability factors. Especially, $H{\ddot{u}}seyin$ Bor had published his important results on these topics from the beginning of 1980 to the end of 1990. In this paper, we investigate the minor academic genealogy of teachers and pupils from Fourier to $H{\ddot{u}}seyin$ Bor in section 2. We introduce the $H{\ddot{u}}seyin$ Bor's major results of the summability for infinite series from 1983 to 1997 in section 3. In conclusion, we summarize his research characteristics and significance on the summability of infinite series. Also, we present the diagrams of $H{\ddot{u}}seyin$ Bor's minor academic genealogy from Fourier to $H{\ddot{u}}seyin$ Bor and minor research lineage on the summability of infinite series.

Lp(T2)-수렴성과 모리츠에 관하여 (On Lp(T2)-Convergence and Móricz)

  • 이정오
    • 한국수학사학회지
    • /
    • 제28권6호
    • /
    • pp.321-332
    • /
    • 2015
  • This paper is concerned with the convergence of double trigonometric series and Fourier series. Since the beginning of the 20th century, many authors have studied on those series. Also, Ferenc $M{\acute{o}}ricz$ has studied the convergence of double trigonometric series and double Fourier series so far. We consider $L^p(T^2)$-convergence results focused on the Ferenc $M{\acute{o}}ricz^{\prime}s$ studies from the second half of the 20th century up to now. In section 2, we reintroduce some of Ferenc $M{\acute{o}}ricz^{\prime}s$ remarkable theorems. Also we investigate his several important results. In conclusion, we investigate his research trends and the simple minor genealogy from J. B. Joseph Fourier to Ferenc $M{\acute{o}}ricz$. In addition, we present the research minor lineage of his study on $L^p(T^2)$-convergence.