References
- Komaravolu CHANDRASEKHARAN and Subbaramiah Minakshisundaram, Some results on double Fourier series, Duke Math. J. 4(3) (1947), 731-753.
- Vladimir G. CHELIDZE, On the absolute convergence of double Fourier series, Doklady AN SSSR. 54(2) (1946), 117-120.
- CHOW Yuan Shih, On the Cesaro summability of double Fourier series, Tohoku Math. J. 5(3) (1954), 277-283. https://doi.org/10.2748/tmj/1178245273
- John J. GERGEN, Convergence criteria for double Fourier series, Trans. Amer. Math. Soc. 35 (1933), 29-63. https://doi.org/10.1090/S0002-9947-1933-1501671-1
- John J. GERGEN, Summability of double Fourier series, Duke Math. J. 3 (1937), 133-148. https://doi.org/10.1215/S0012-7094-37-00310-7
-
Richard P. GOSSELIN, A convergence theorem for double
$L^2$ Fourier series. Can. J. Math 10 (1958), 392-398. https://doi.org/10.4153/CJM-1958-038-1 - Albert E. GREEN, Double Fourier series and boundary value problems, Mathematical Proceedings of the Cambridge Philosophical Society 40(3) (1944), 222-228. https://doi.org/10.1017/S0305004100018375
- Godfrey H. HARDY, On double Fourier series and especially those which represent the double zeta-function with real and incommensurable parameters, Quart. J. Math. 37(1) (1906), 53-79.
- John G. HERRIOT, Norlund Summability of Double Fourier Series, Trans. Amer. Math. Soc. 52(1) (1942), 72-94.
-
LEE Jung Oh, The life of Fourier, the minor Lineage of his younger scholars and a theorem of Telyakovskii on
$L^1$ -convergence, The Korean Journal for History of Mathematics 22(1) (2009), 25-40. -
LEE Jung Oh, Partial sum of Fourier series, the reinterpret of
$L^1$ -convergence results using Fourier coefficients and theirs minor lineage, The Korean Journal for History of Mathematics 23(1) (2010), 53-66. -
LEE Jung Oh, A brief study on Stanojevic's works on the
$L^1$ -convergence, Journal for History of Mathematics 26(2-3) (2013), 163-176. https://doi.org/10.14477/jhm.2013.26.2_3.163 -
LEE Jung Oh, A brief study on Bhatia's research of
$L^1$ -convergence, Journal for History of Mathematics 27(1) (2014), 1-13. https://doi.org/10.14477/jhm.2014.27.1.001 - Jozef MARCINKIEWICZ, Antony ZYGMUND, On the summability of double Fourier series, Fundamenta Mathematicae 32(1) (1939), 122-132. https://doi.org/10.4064/fm-32-1-122-132
- Charles N. MOORE, On convergence factors in double series and double Fourier series, Trans. Amer. Math. Soc. 14 (1913), 73-104.
- George E. REVES, Otto SZASZ, Some theorems on double trigonometric series, Duke Math. J. 9 (1942), 693-705. https://doi.org/10.1215/S0012-7094-42-00948-7
- P. L. SHARMA, On the harmonic summability of double Fourier series, Annali di Matematica Pura ed Applicata 56(1) (1961), 159-175. https://doi.org/10.1007/BF02414270
- P. L. SHARMA, On harmonic summability of double Fourier series, Proc. Amer. Math. Soc. 9 (1958), 979-986. https://doi.org/10.1090/S0002-9939-1958-0104968-8
- Per SJOLIN, Convergence almost everywhere of certain singular integrals and multiple Fourier series, Arkiv fur Matematik 9(1-2) (1971), 65-90. https://doi.org/10.1007/BF02383638
- N. R. TEVZADZE, The convergence of the double Fourier series at a square summable function, Sakharth. SSR Mecn. Akad. Moambe 58 (1970), 277-279.
- Fred USTINA, Convergence of double Fourier series, Annali di Matematica Pura ed Applicata 85(1) (1970), 21-47. https://doi.org/10.1007/BF02413528
- Hiroshi WATANABE, Summability of double Fourier series, Tohoku Math. J. 17(2) (1965), 150-160. https://doi.org/10.2748/tmj/1178243581
- Anthony J. WHITE, On the restricted Cesaro summability of double Fourier series, Trans. Amer. Math. Soc. 99(2) (1961), 308-319.
- Levan V. ZHIZHIASHVILI, On the summation of double Fourier series, Siberian Mathematical Journal 8(3) (1967), 402-414. https://doi.org/10.1007/BF02196423
Cited by
- On Lp(T2)-Convergence and Móricz vol.28, pp.6, 2015, https://doi.org/10.14477/jhm.2015.28.6.321
- 푸리에 급수에 대한 체사로 총합가능성의 고전적 결과에 관하여 vol.30, pp.1, 2017, https://doi.org/10.14477/jhm.2017.30.1.017
- 푸리에 급수에 대한 총합가능성의 결과들에 관하여 vol.30, pp.4, 2014, https://doi.org/10.14477/jhm.2017.30.4.233