A RECENT EXTENSION OF THE WEIGHTED MEAN SUMMABILITY OF INFINITE SERIES

ŞEBNEM YILDIZ

Abstract

We obtain a new matrix generalization result dealing with weighted mean summability of infinite series by using a new general class of power increasing sequences obtained by Sulaiman [9]. This theorem also includes some new and known results dealing with some basic summability methods.

AMS Mathematics Subject Classification : 26D15, 40A05, 40D15, 40F05. Key words and phrases : Hölder's inequality, Minkowski's inequality, absolute matrix summability, summability factors, infinite series.

1. Introduction

By $\left(t_{n}\right)$ we denote the nth $(C, 1)$ mean of the sequence $\left(n a_{n}\right)$. The series $\sum a_{n}$ is said to be summable $|C, 1|_{k}, k \geq 1$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}<\infty \tag{1}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, \quad i \geq 1\right) \tag{2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
w_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{3}
\end{equation*}
$$

defines the sequence $\left(w_{n}\right)$ of the weighted arithmetic mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see

[^0]© 2021 KSCAM .
[4]). A series $\sum a_{n}$ with partial sums $\left(s_{n}\right)$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [2])
\[

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|w_{n}-w_{n-1}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

\]

If we take $p_{n}=1$ for all n, then $\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ summability.
A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq$ $b_{n} \leq B c_{n}$ (see [1]). A positive sequence $a=\left(a_{n}\right)$ is said to be a quasi- β-power increasing if there exists a constant $K=K(\beta, a) \geq 1$ such that

$$
\begin{equation*}
K n^{\beta} a_{n} \geq m^{\beta} a_{m} \tag{5}
\end{equation*}
$$

holds for $n \geq m$ (see [5]). It should be noted that every almost increasing sequence is a quasi- β-power increasing sequence for any nonnegative β, but the converse need not be true as can be seen by taking $a_{n}=n^{-\beta}$.
Let $\sum a_{n}$ be a given series with partial sums $\left(s_{n}\right)$. Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix with nonzero diagonal entries. Then A defines a sequence-to-sequence transformation, mapping of the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots \tag{6}
\end{equation*}
$$

A series $\sum a_{n}$ is said to be summable $\left|A, p_{n}\right|_{k}, k \geq 1$, if (see [8])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|A_{n}(s)-A_{n-1}(s)\right|^{k}<\infty \tag{7}
\end{equation*}
$$

In the special case, if we take $p_{n}=1$ for all n, then $\left|A, p_{n}\right|_{k}$ summability reduces to $|A|_{k}$ summability (see [7]).
If we put $a_{n v}=\frac{p_{v}}{P_{n}}$, then $\left|A, p_{n}\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability. If we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all n, then $\left|A, p_{n}\right|_{k}$ summability reduces to $|C, 1|_{k}$ summability.

2. Known Result

In [9], Sulaiman proved the following result dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability.

Theorem 2.1 ([9]). If the sequence $\left(X_{n}\right)$ is a quasi- β-power increasing sequence $0<\beta<1,\left(\lambda_{n}\right)$ is a sequence of constants both satisfying conditions

$$
\begin{align*}
& \sum_{n=1}^{m} \frac{1}{n} P_{n}=O\left(P_{m}\right), \tag{8}\\
& \lambda_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{9}
\end{align*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} n X_{n}(\beta)|\Delta| \Delta \lambda_{n} \|<\infty \tag{10}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{n=1}^{m} \frac{1}{n\left(n^{\beta} X_{n}\right)^{k-1}}\left|t_{n}\right|^{k}=O\left(m^{\beta} X_{m}\right), \tag{11}\\
& \sum_{n=1}^{m} \frac{p_{n}}{P_{n}} \frac{1}{\left(n^{\beta} X_{n}\right)^{k-1}}\left|t_{n}\right|^{k}=O\left(m^{\beta} X_{m}\right) . \tag{12}
\end{align*}
$$

Then the series $\sum_{n=1}^{\infty} a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

3. Main Result

The aim of this paper is to generalize Theorem 2.1 for $\left|A, p_{n}\right|_{k}$ summability method.
Given a normal matrix $A=\left(a_{n v}\right)$, we associate two lower semimatrices $\bar{A}=$ $\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots \tag{14}
\end{equation*}
$$

It is known that

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \tag{16}
\end{equation*}
$$

Let ω be the class of all matrices $A=\left(a_{n v}\right)$ satisfying

$$
\begin{align*}
& A \text { is a positive normal matrix, } \tag{17}\\
& \bar{a}_{n 0}=1, \quad n=0,1, \ldots \tag{18}\\
& a_{n-1, v} \geq a_{n v}, \quad n \geq v+1 \tag{19}
\end{align*}
$$

Theorem 3.1. Let $A \in \omega$ satisfying

$$
\begin{align*}
& a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right) \tag{20}\\
& \sum_{v=1}^{n-1} \frac{1}{v}\left|\hat{a}_{n v}\right|=O\left(a_{n n}\right) . \tag{21}
\end{align*}
$$

Let $\left(X_{n}\right)$ be a quasi- β-power increasing sequence $0<\beta<1$. If the sequences $\left(\lambda_{n}\right)$, and $\left(X_{n}\right)$ satisfy all the conditions of Theorem 2.1, then the series

$$
\sum_{n=1}^{\infty} a_{n} \lambda_{n}
$$

is summable $\left|A, p_{n}\right|_{k}, k \geq 1$.
The following lemmas are required to prove our theorem.
Lemma 3.2 ([9]). Let $\left(X_{n}\right)$ be a quasi- β-power increasing sequence such that the conditions (9) and (10) of Theorem 2.1 are satisfied. Then

$$
\begin{align*}
& n^{\beta+1} X_{n}\left|\Delta \lambda_{n}\right|=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{22}\\
& \sum_{n=1}^{\infty} n^{\beta} X_{n}\left|\Delta \lambda_{n}\right|<\infty \tag{23}\\
& n^{\beta} X_{n}\left|\lambda_{n}\right|=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{24}
\end{align*}
$$

where $X_{n}(\beta)=n^{\beta} X_{n}$.
Lemma 3.3 ([6]). Let $A \in \omega$ and from the condition (13), (14), (18) and (19), then

$$
\begin{align*}
& \sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \leq a_{n n} \tag{25}\\
& \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \leq a_{v v} \tag{26}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=v+1}^{m+1}\left|\hat{a}_{n, v+1}\right| \leq 1 \tag{27}
\end{equation*}
$$

Proof of Theorem 3.1

Proof. Let $\left(V_{n}\right)$ denotes the A-transform of the series $\sum a_{n} \lambda_{n}$. Then, by the definition, we have that

$$
\bar{\Delta} V_{n}=\sum_{v=1}^{n} \hat{a}_{n v} a_{v} \lambda_{v}=\sum_{v=1}^{n} v a_{v} v^{-1} \hat{a}_{n v} \lambda_{v}
$$

Applying Abel's transformation to this sum, we have that

$$
\bar{\Delta} V_{n}=\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v} \lambda_{v} v^{-1}\right) \sum_{r=1}^{v} r a_{r}+\hat{a}_{n n} \lambda_{n} n^{-1} \sum_{v=1}^{n} v a_{v} .
$$

By the formula for the difference of products of sequences (see [4]) we have

$$
\begin{aligned}
& \bar{\Delta} V_{n} \\
& =\sum_{v=1}^{n-1}(v+1) t_{v}\left(\frac{1}{v(v+1)} \hat{a}_{n v} \lambda_{v}+\frac{1}{(v+1)} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v}+\frac{1}{(v+1)} \hat{a}_{n, v+1} \Delta \lambda_{v}\right) \\
& +\frac{n+1}{n} a_{n n} \lambda_{n} t_{n} \\
& \bar{\Delta} V_{n}=\sum_{v=1}^{n-1} \hat{a}_{n v} \lambda_{v} v^{-1} t_{v}+\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v} t_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} t_{v} \Delta \lambda_{v}+a_{n n} \lambda_{n} t_{n} \frac{n+1}{n} \\
& \bar{\Delta} V_{n}=V_{n, 1}+V_{n, 2}+V_{n, 3}+V_{n, 4} .
\end{aligned}
$$

To complete the proof of Theorem 3.1, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|V_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 . \tag{28}
\end{equation*}
$$

Firstly, using Hölder's inequality, we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|V_{n, 1}\right|^{k}=\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\sum_{v=1}^{n-1} \hat{a}_{n v} \lambda_{v} t_{v} v^{-1}\right|^{k} \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n v}\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \frac{1}{v}\right) \times\left(\sum_{v=1}^{n-1} \frac{1}{v}\left|\hat{a}_{n v}\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1}\left|\hat{a}_{n v}\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \frac{1}{v} \\
& =O(1) \sum_{v=1}^{m} \frac{1}{v} \frac{\left|\lambda_{v}\right|\left(\left.v^{\beta} X_{v}\left|\lambda_{v}\right|\right|^{k-1}\left|t_{v}\right|^{k}\right.}{\left(v^{\beta} X_{v}\right)^{k-1}} \sum_{n=v+1}^{m+1}\left|\hat{a}_{n v}\right| \\
& =O(1) \sum_{v=1}^{m} \frac{1}{v} \frac{\left|\lambda_{v}\right|\left|t_{v}\right|^{k}}{\left(v^{\beta} X_{v}\right)^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left(\sum_{r=1}^{v} \frac{1}{r} \frac{\left|t_{r}\right|^{k}}{\left(r^{\beta} X_{r}\right)^{k-1}}\right) \Delta\left|\lambda_{v}\right|+O(1)\left(\sum_{v=1}^{m} \frac{1}{v} \frac{\left|t_{v}\right|^{k}}{\left(v^{\beta} X_{v}\right)^{k-1}}\right)\left|\lambda_{m}\right| \\
& =O(1) \sum_{v=1}^{m-1} v^{\beta} X_{v}\left|\Delta \lambda_{v}\right|+O(1) m^{\beta} X_{m}\left|\lambda_{m}\right|=O(1) \text { as } \quad m \rightarrow \infty,
\end{aligned}
$$

by the hypotheses of the Theorem 3.1, Lemma 3.2, and Lemma 3.3. And using Lemma 3.2, and Lemma 3.3. we have that

$$
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|V_{n, 2}\right|^{k}=\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v} t_{v}\right|^{k}
$$

$$
\begin{aligned}
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m} \frac{p_{v}}{P_{v}}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \frac{\left(v^{\beta} X_{v}\left|\lambda_{v}\right|\right)^{k-1}}{\left(v^{\beta} X_{v}\right)^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left(\sum_{r=1}^{v} \frac{p_{r}}{P_{r}} \frac{\left|t_{r}\right|^{k}}{\left(r^{\beta} X_{r}\right)^{k-1}}\right) \Delta\left|\lambda_{v}\right|+O(1)\left(\sum_{v=1}^{m} \frac{p_{v}}{P_{v}} \frac{\left|t_{v}\right|^{k}}{\left(v^{\beta} X_{v}\right)^{k-1}}\right)\left|\lambda_{m}\right| \\
& =O(1) \sum_{v=1}^{m-1} v^{\beta} X_{v}\left|\Delta \lambda_{v}\right|+O(1) m^{\beta} X_{m}\left|\lambda_{m}\right| \\
& =O(1) \quad \text { as } m \rightarrow \infty,
\end{aligned}
$$

by the hypotheses of the Theorem 3.1. Also, using Lemma 3.2, and Lemma 3.3. we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|V_{n, 3}\right|^{k}=\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \Delta \lambda_{v} t_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \frac{\left|\Delta \lambda_{v}\right|}{\left(v^{\beta} X_{v}\right)^{k-1}}\left|t_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| v^{\beta} X_{v}\left|\Delta \lambda_{v}\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} a_{n n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \frac{\left|\Delta \lambda_{v}\right|}{\left(v^{\beta} X_{v}\right)^{k-1}}\left|t_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{n-1} v^{\beta} X_{v}\left|\Delta \lambda_{v}\right|\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \frac{\left|\Delta \lambda_{v}\right|}{\left(v^{\beta} X_{v}\right)^{k-1}}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m} \frac{v\left|\Delta \lambda_{v}\right|}{\left(v^{\beta} X_{v}\right)^{k-1}} \frac{\left|t_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m-1}\left(\sum_{r=1}^{v} \frac{1}{r} \frac{\left|t_{r}\right|^{k}}{\left(r^{\beta} X_{r}\right)^{k-1}}\right) \Delta\left(v\left|\Delta \lambda_{v}\right|\right)+O(1)\left(\sum_{v=1}^{m} \frac{1}{v} \frac{\left|t_{v}\right|^{k}}{\left(v^{\beta} X_{v}\right)^{k-1}}\right) m\left|\Delta \lambda_{m}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m-1} v^{\beta} X_{v} \Delta\left(v\left|\Delta \lambda_{v}\right|\right)+O(1) m^{\beta+1} X_{m}\left|\Delta \lambda_{m}\right| \\
& =O(1) \sum_{v=1}^{m-1} v^{\beta} X_{v}\left|\Delta \lambda_{v}\right|+O(1) \sum_{v=1}^{m-1} v^{\beta+1} X_{v}|\Delta| \Delta \lambda_{v}| |+O(1) m^{\beta+1} X_{m}\left|\Delta \lambda_{m}\right| \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by the hypotheses of the Theorem 3.1. Finally, we have

$$
\begin{aligned}
& \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|V_{n, 4}\right|^{k}=O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} a_{n n}^{k}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \frac{p_{n}}{P_{n}} \frac{\left|t_{n}\right|^{k}}{\left(n^{\beta} X_{n}\right)^{k-1}}\left(n^{\beta} X_{n}\left|\lambda_{n}\right|\right)^{k-1}\left|\lambda_{n}\right| \\
& =O(1) \sum_{n=1}^{m} \frac{p_{n}}{P_{n}} \frac{\left|t_{n}\right|^{k}}{\left(n^{\beta} X_{n}\right)^{k-1}}\left|\lambda_{n}\right| \\
& =O(1) \sum_{n=1}^{m-1}\left(\sum_{v=1}^{n} \frac{p_{v}}{P_{v}} \frac{\left|t_{v}\right|^{k}}{\left(v^{\beta} X_{v}\right)^{k-1}}\right) \Delta\left|\lambda_{n}\right|+O(1)\left(\sum_{n=1}^{m} \frac{p_{n}}{P_{n}} \frac{\left|t_{n}\right|^{k}}{\left(n^{\beta} X_{n}\right)^{k-1}}\right)\left|\lambda_{m}\right| \\
& =O(1) \sum_{n=1}^{m-1} n^{\beta} X_{n}\left|\Delta \lambda_{n}\right|+O(1) m^{\beta} X_{m}\left|\lambda_{m}\right| \\
& =O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by the hypotheses of the Theorem 3.1, and Lemma 3.2.
This completes the proof of Theorem 3.1.

4. Conclusions

1. If we take $a_{n v}=\frac{p_{v}}{P_{n}}$ in Theorem 3.1, then we can return to Theorem 2.1.
2. If we take $p_{n}=1$ for all n in Theorem 3.1, then we have a new theorem on $|A|_{k}$ summability method.
3. If we put $a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all n in Theorem 3.1, then we obtain another result concerning $|C, 1|_{k}$ summability method.

References

1. N.K. Bari and S.B. Stechkin, Best approximation and differential properties of two conjugate functions, Tr. Mosk. Mat. Obshch. 5 (1956), 483-522.
2. H. Bor, On two summability methods, Math. Proc. Camb. Philos. Soc. 97 (1985), 147-149.
3. T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. 7 (1957), 113-141.
4. G.H. Hardy, Divergent Series, Clarendon Press., Oxford, 1949.
5. L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen 58 (2001), 791-796.
6. B.E. Rhoades, Inclusion theorems for absolute matrix summability methods, J. Math. Anal. Appl. 238 (1999), 82-90.
7. N. Tanovič-Miller, On strong summability, Glas. Mat. Ser III 14 (1979), 87-97.
8. W.T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series, Indian J. Pure Appl. Math. 34 (2003), 1547-1557.
9. W.T. Sulaiman, A recent note on the absolute Riesz summability factor of infinite series, Int. J. Math. Archive 2 (2011), 339-344.

Şebnem Yıldız is currently working as an Associate Professor at the Department of Mathematics, Faculty of Arts and Sciences in Kırşehir Ahi Evran University, Turkey. She received her B.Sc., M.Sc., and Ph.D. degrees at Yıldız Technical University. Her research interests include sequences, series, summability, positive operators, and Riesz spaces. She also serves as referee and editor in some mathematical journals.
Department of Mathematics, Kırşehir Ahi Evran University, Turkey.
e-mail: sebnemyildiz@ahievran.edu.tr

[^0]: Received May 9, 2020. Revised December 16, 2020. Accepted December 19, 2020.

