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APPLICATIONS OF QUASI POWER INCREASING
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Abstract. In the present paper, two theorems on absolute matrix summa-
bility of infinite series are generalized for the φ − |A, pn|k summability

method using quasi β-power increasing sequences instead of almost
increasing sequences.
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1. Introduction

Let
∑

an be a given infinite series with the partial sums (sn). Let (pn) be a
sequence of positive numbers such that

Pn =

n∑
v=0

pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1) .

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero
diagonal entries and let (φn) be any sequence of positive real numbers. The
series

∑
an is said to be summable φ− |A, pn|k, k ≥ 1, if (see [11])

∞∑
n=1

φk−1
n |An(s)−An−1(s)|k < ∞,
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where

An(s) =

n∑
v=0

anvsv, n = 0, 1, ...

For φn = Pn

pn
, φ − |A, pn|k summability reduces to |A, pn|k summability

(see [21]). For φn = n for all n, φ − |A, pn|k summability is the same as |A|k
summability (see [22]). Also, for φn = Pn

pn
and anv = pv

Pn
, we get |N̄ , pn|k summa-

bility (see [2]).

A positive sequence (bn) is said to be almost increasing if there exist a
positive increasing sequence (cn) and two positive constants K and M such that
Kcn ≤ bn ≤ Mcn (see [1]). Obviously, every increasing sequence is almost
increasing but the converse need not be true as can be seen from the example
bn = 3(−1)nn3. There are some different studies on almost increasing sequences,
for more details, see [4, 8, 9, 10, 13, 14, 16, 17, 18, 19]. Furthermore, in [20], the
following theorems on almost increasing sequences have been obtained.

Theorem 1.1. Let (Xn) be an almost increasing sequence, and let there be
sequences (γn) and (λn) such that

|∆λn| ≤ γn, (1)

γn → 0 as n → ∞, (2)

∞∑
n=1

n|∆γn|Xn < ∞, (3)

|λn|Xn = O(1) as n → ∞. (4)

Let A = (anv) be a positive normal matrix such that

ān0 = 1, n = 0, 1, ..., (5)

an−1,v ≥ anv for n ≥ v + 1, (6)

ann = O

(
pn
Pn

)
. (7)

If
n∑

v=1

|sv|k

v
= O(Xn) as n → ∞, (8)

n∑
v=1

pv
Pv

|sv|k = O(Xn) as n → ∞, (9)

then the series
∑

anλn is summable |A, pn|k, k ≥ 1.
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Theorem 1.2. Let (Xn) be an almost increasing sequence, and let the conditions
(1)-(4), (9) be satisfied. Let A = (anv) be a positive normal matrix as in Theorem
1.1. If the conditions

∞∑
v=1

Pv|∆γv|Xv < ∞, (10)

n∑
v=1

|sv|k

Pv
= O(Xn) as n → ∞ (11)

are satisfied, then the series
∑

anλn is summable |A, pn|k, k ≥ 1.

2. Main Results

A positive sequence X = (Xn) is said to be a quasi β-power increasing
sequence if there exists a constantK = K(β,X) ≥ 1 such thatKnβXn ≥ mβXm

holds for all n ≥ m ≥ 1 (see [6]). Every almost increasing sequence is a quasi β-
power increasing sequence for any nonnegative β, but the converse need not
be true as can be seen by taking an example, say Xn = n−β for β > 0.
A sequence (λn) is said to be of bounded variation, denoted by (λn) ∈ BV,
if
∑∞

n=1 |∆λn| =
∑∞

n=1 |λn − λn+1| < ∞. For some studies on quasi power
increasing sequences, we refer to [3, 5, 12, 15]. The aim of this paper is to
generalize Theorem 1.1 and Theorem 1.2 to φ − |A, pn|k summability method
using quasi β-power increasing sequences. Before stating our theorems, we must
first introduce some further notations. Given a normal matrix A = (anv), two

lower semimatrices Ā = (ānv) and Â = (ânv) are defined as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... (12)

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (13)

and

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav (14)

∆̄An(s) =

n∑
v=0

ânvav. (15)

Theorem 2.1. Let (λn) ∈ BV and A = (anv) be a positive normal matrix
as in Theorem 1.1. Let (Xn) be a quasi β-power increasing sequence for some

0 < β < 1 and
(

φnpn

Pn

)
be a non-increasing sequence. If the conditions (1)-(4)

and
n∑

v=1

(
φvpv
Pv

)k−1 |sv|k

v
= O(Xn) as n → ∞, (16)
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n∑
v=1

φk−1
v

(
pv
Pv

)k

|sv|k = O(Xn) as n → ∞, (17)

are satisfied, then the series
∑

anλn is summable φ− |A, pn|k, k ≥ 1.

Theorem 2.2. Let (λn) ∈ BV and A = (anv) be a positive normal matrix
as in Theorem 1.1. Let (Xn) be a quasi β-power increasing sequence for some

0 < β < 1 and
(

φnpn

Pn

)
be a non-increasing sequence. If the conditions (1)-(4),

(10), (17) and

n∑
v=1

(
φvpv
Pv

)k−1 |sv|k

Pv
= O(Xn) as n → ∞ (18)

are satisfied, then the series
∑

anλn is summable φ− |A, pn|k, k ≥ 1.

Lemma 2.3. ([6]) Let (Xn) be a quasi β-power increasing sequence for some
0 < β < 1. If the conditions (2) and (3) are satisfied, then

nXnγn = O(1) as n → ∞, (19)

∞∑
n=1

Xnγn < ∞. (20)

Lemma 2.4. ([3]) Let (Xn) be a quasi β-power increasing sequence for some
0 < β < 1. If the conditions (2) and (10) are satisfied, then

PnXnγn = O(1) as n → ∞, (21)

∞∑
n=1

pnXnγn < ∞. (22)

3. Proof of Theorem 2.1

Let (Mn) denotes A-transform of the series
∑

anλn. Then, by (14) and (15),
we have

∆̄Mn =

n∑
v=1

ânvλvav.

By Abel’s transformation, we have

∆̄Mn =

n−1∑
v=1

∆v(ânvλv)

v∑
k=1

ak + ânnλn

n∑
v=1

av

=

n−1∑
v=1

(ânvλv − ân,v+1λv+1 − ân,v+1λv + ân,v+1λv)sv + annλnsn

=

n−1∑
v=1

∆v(ânv)λvsv +

n−1∑
v=1

ân,v+1∆λvsv + annλnsn = Mn,1 +Mn,2 +Mn,3.
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To prove Theorem 2.1, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

φk−1
n |Mn,r|k < ∞ for r = 1, 2, 3.

From Hölder’s inequality, we obtain

m+1∑
n=2

φk−1
n | Mn,1 |k

≤
m+1∑
n=2

φk−1
n

(
n−1∑
v=1

|∆v(ânv)| |λv| |sv|

)k

≤
m+1∑
n=2

φk−1
n

(
n−1∑
v=1

|∆v(ânv)| |λv|k |sv
|k
)(

n−1∑
v=1

|∆v(ânv)|

)k−1

.

Here, by (13) and (12), we have

∆v(ânv) = ânv − ân,v+1

= ānv − ān−1,v − ān,v+1 + ān−1,v+1

= anv − an−1,v. (23)

Then, by (6), (12) and (5), we get

n−1∑
v=1

|∆v(ânv)| =

n−1∑
v=1

(an−1,v − anv) ≤ ann. (24)

By using (24), (7), we have

m+1∑
n=2

φk−1
n | Mn,1 |k = O(1)

m+1∑
n=2

(
φnpn
Pn

)k−1
(

n−1∑
v=1

|∆v(ânv)| |λv|k |sv |
k

)

= O(1)

m∑
v=1

|λv||sv|k
m+1∑

n=v+1

(
φnpn
Pn

)k−1

|∆v(ânv)|

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1

|λv||sv|k
m+1∑

n=v+1

|∆v(ânv)| .

We get
∑m+1

n=v+1 |∆v(ânv)| ≤ avv by (23) and (6), then

m+1∑
n=2

φk−1
n | Mn,1 |k = O(1)

m∑
v=1

φk−1
v

(
pv
Pv

)k

|λv| |sv|k

= O(1)

m−1∑
v=1

∆|λv|
v∑

r=1

φk−1
r

(
pr
Pr

)k

|sr|k
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+ O(1)|λm|
m∑
r=1

φk−1
r

(
pr
Pr

)k

|sr|k

= O(1)

m−1∑
v=1

γvXv +O(1)|λm|Xm

= O(1) as m → ∞,

by Abel’s transformation, and using the conditions (1), (17), (20) and (4).

Again, using Hölder’s inequality, we obtain

m+1∑
n=2

φk−1
n | Mn,2 |k ≤

m+1∑
n=2

φk−1
n

(
n−1∑
v=1

|ân,v+1||∆λv||sv|

)k

≤
m+1∑
n=2

φk−1
n

(
n−1∑
v=1

|ân,v+1||∆λv||sv|k
)

×

(
n−1∑
v=1

|ân,v+1||∆λv|

)k−1

.

Now, by (13), (12), (6), we get

|ân,v+1| = ān,v+1 − ān−1,v+1 = ann +

n−1∑
i=v+1

(ani − an−1,i) ≤ ann.

Then, using (7) and (1), we have

m+1∑
n=2

φk−1
n | Mn,2 |k = O(1)

m+1∑
n=2

(
φnpn
Pn

)k−1
(

n−1∑
v=1

|ân,v+1|γv|sv|k
)

×

(
n−1∑
v=1

|∆λv|

)k−1

.

Here, using the fact that (λn) ∈ BV, we get

m+1∑
n=2

φk−1
n | Mn,2 |k = O(1)

m+1∑
n=2

(
φnpn
Pn

)k−1
(

n−1∑
v=1

|ân,v+1|γv|sv|k
)

= O(1)

m∑
v=1

γv|sv|k
m+1∑

n=v+1

(
φnpn
Pn

)k−1

|ân,v+1|.

We have
∑m+1

n=v+1 |ân,v+1| ≤ 1 by (13), (12), (5) and (6), then
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m+1∑
n=2

φk−1
n | Mn,2 |k = O(1)

m∑
v=1

(
φvpv
Pv

)k−1

vγv
|sv|k

v
.

Thus,

m+1∑
n=2

φk−1
n | Mn,2 |k = O(1)

m−1∑
v=1

∆(vγv)

v∑
r=1

(
φrpr
Pr

)k−1 |sr|k

r

+O(1)mγm

m∑
r=1

(
φrpr
Pr

)k−1 |sr|k

r

= O(1)

m−1∑
v=1

v|∆γv|Xv +O(1)

m−1∑
v=1

γv+1Xv+1

+ O(1)mγmXm = O(1) as m → ∞,

by using Abel’s transformation, and using the conditions (16), (3), (20) and (19).

Finally, we have

m∑
n=1

φk−1
n | Mn,3 |k =

m∑
n=1

φk−1
n aknn|λn|k|sn|k

= O(1)

m∑
n=1

φk−1
n

(
pn
Pn

)k

|λn| |sn|k

= O(1) as m → ∞,

as in Mn,1, thus the proof of Theorem 2.1 is completed.

4. Proof of Theorem 2.2

For the proof of Theorem 2.2, it is sufficient to show

∞∑
n=1

φk−1
n | Mn,r |k< ∞ for r = 2.

First, as in the proof of Theorem 2.1, we have

m+1∑
n=2

φk−1
n | Mn,2 |k = O(1)

m∑
v=1

(
φvpv
Pv

)k−1

γv|sv|k.

Then, by Abel’s transformation, and using the conditions (18), (10), (22) and
(21), we get

m+1∑
n=2

φk−1
n | Mn,2 |k = O(1)

m∑
v=1

(
φvpv
Pv

)k−1

Pvγv
|sv|k

Pv
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= O(1)

m−1∑
v=1

∆(Pvγv)

v∑
r=1

(
φrpr
Pr

)k−1 |sr|k

Pr

+ O(1)Pmγm

m∑
r=1

(
φrpr
Pr

)k−1 |sr|k

Pr

= O(1)

m−1∑
v=1

Pv|∆γv|Xv +O(1)

m−1∑
v=1

pv+1γv+1Xv+1

+ O(1)PmγmXm = O(1) as m → ∞.

This completes the proof of Theorem 2.2.

5. Conclusions

If we take (Xn) as an almost increasing sequence and φn = Pn

pn
in Theorem 2.1

and Theorem 2.2, the conditions (16), (17) reduce to the conditions (8), (9) and
the condition (18) reduces to (11), then we get Theorem 1.1 and Theorem 1.2.
Also, if we take (Xn) as an almost increasing sequence, φn = Pn

pn
and anv = pv

Pn

in Theorem 2.1 and Theorem 2.2, then we get two known theorems on |N̄ , pn|k
summability method (see [7]). In these cases, the condition (λn) ∈ BV is not
needed.
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14. H.S. Özarslan, An application of absolute matrix summability using almost increasing and

δ-quasi-monotone sequences, Kyungpook Math. J. 59 (2019), 233-240.
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